Advertisement

Journal of Coastal Conservation

, Volume 22, Issue 5, pp 831–844 | Cite as

Cosmogenic exposure dating constraints for coastal landslide evolution on the Island of Malta (Mediterranean Sea)

  • Mauro Soldati
  • Timothy T. Barrows
  • Mariacristina PrampoliniEmail author
  • Keith L. Fifield
Article

Abstract

Landslides affecting the north-western coast of the Island of Malta have been investigated and monitored for 10 years. As a result of a bathymetric survey, it was discovered the deposits continued out onto the seafloor, thus raising questions as to the timing of their development. Furthermore it was uncertain as to which environment they developed in and which factors controlled their movements. The aim of this paper is to investigate representative detachments to chronologically constrain these mass movement events and outline their spatial and temporal evolution. Samples for exposure dating using the cosmogenic nuclide 36Cl were collected from head scarps and blocks located within two long-term monitored landslides characterised by extensive block slides. The results indicate the oldest dated block detachment occurring in a subaerial environment at ca. 21 ka, when the sea level was about 130 m lower than at present. Mass movement possibly accelerated when sea level reached the landslide toe during the post-glacial marine transgression. Considering the timing of block movement, the landslide deposits observed today appear to be related to a first-time failure involving a large part of the slope, though and alternative hypothesis is also taken here into account. This main event is likely to have been followed by secondary movements influenced by toe undercutting and clay saturation due to rising sea level. However, further research on mass movement kinematics is required in order to model their evolution and explore whether this interpretation is widely applicable along the Maltese coast.

Keywords

Landslides Exposure dating Cosmogenic nuclides Malta Mediterranean Sea 

Notes

Acknowledgements

This research was part of the Project “Developing geomorphological mapping skills and datasets in anticipation of subsequent susceptibility, vulnerability, hazard and risk mapping” funded by the EUR-OPA Major Hazards Agreement of the Council of Europe (Unimore responsible: Prof. Mauro Soldati).

The author are grateful to Dr. Stefano Devoto (University of Trieste), Dr. Alessandro Pasuto and Dr. Matteo Mantovani (CNR-IRPI of Padua) for assistance on the field during sampling operations. We thank Karen Leslie and Sharon Turner for assistance in the laboratory.

References

  1. Alexander D (1988) A review of the physical geography of Malta and its significance for tectonic geomorphology. Quat Sci Rev 7(1):41–53. doi: 10.1016/0277-3791(88)90092-3 CrossRefGoogle Scholar
  2. Baldassini N, Di Stefano A (2016) Stratigraphic features of the Maltese Archipelago: a synthesis. Nat Hazards 86(2):203-231. doi: 10.1007/s11069-016-2334-9 CrossRefGoogle Scholar
  3. Ballantyne CK, Sandeman GF, Stone JO, Wilson P (2014) Rock-slope failure following Late Pleistocene deglaciation on tectonically stable mountainous terrain. Quat Sci Rev 86:144–157. doi: 10.1016/j.quascirev.2013.12.021 CrossRefGoogle Scholar
  4. Barrows TT, Almond P, Rose R, Fifield LK, Mills TC, Tims SG (2013) Late Pleistocene glacial stratigraphy of the Kumara-Moana region, West Coast of South Island, New Zealand. Quat Sci Rev 74:139–159. doi: 10.1016/j.quascirev.2013.04.010 CrossRefGoogle Scholar
  5. Borgatti L, Soldati M (2010a) Landslides as proxy of climate changes: a record from the Dolomites (northern Italy). Geomorphology 120(1–2):56–64. doi: 10.1016/j.geomorph.2009.09.015 CrossRefGoogle Scholar
  6. Borgatti L, Soldati M (2010b) Landslides and climatic change. In: Alcántara-Ayala I, Goudie AS (eds) Geomorphological hazards and disaster prevention. Cambridge University Press, Cambridge, pp 87–95CrossRefGoogle Scholar
  7. Borgatti L, Soldati M (2013) Hillslope Processes and Climate Change. In: Shroder JF, Marston RA, Stoffel M (eds) Treatise on Geomorphology, Mountain and Hillslope Geomorphology, vol 7. Academic Press, San Diego, pp 306–319.  https://doi.org/10.1016/B978-0-12-374739-6.00180-9 CrossRefGoogle Scholar
  8. Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, Mitrovica JX, Hostetler SW, Marshell McCabe A (2009) The Last Glacial Maximum. Science 325:710–714CrossRefGoogle Scholar
  9. Conti S, Tosatti G (1996) Tectonic vs gravitational processes affecting Ligurian and Epiligurian units in the Marecchia valley (northern Apennines). Memorie di Scienze Geologiche 48:07–142Google Scholar
  10. Cruden DM, Varnes DJ (1996) Landslides investigation and mitigation, transportation research board. In: Turner AK, e (eds) Landslide types and process, vol 247. National Research Council, National Academy Press, Washington, pp 36–75 Special ReportGoogle Scholar
  11. Darnault R, Rolland Y, Braucher R, Boulèrs D, Revel M, Sanchez G, Bouissou S (2012) Timing of the last deglaciation revealed by receding glaciers at the Alpine-scale: impact on mountain geomorphology. Quat Sci Rev 31:127–142. doi: 10.1016/j.quascirev.2011.10.019 CrossRefGoogle Scholar
  12. Dart CJ, Bosence WJ, McClay KR (1993) Statigraphy and structure of the Maltese graben system. J Geol Soc Lond 150:153–1166. doi: 10.1144/gsjgs.150.6.1153 CrossRefGoogle Scholar
  13. Devoto S, Biolchi S, Bruschi VM, Furlani S, Mantovani M, Piacentini D, Pasuto A, Soldati M (2012) Geomorphological map of the NW Coast of the Island of Malta (Mediterranean Sea). J Maps 8(1):33–40. doi: 10.1080/17445647.2012.668425 CrossRefGoogle Scholar
  14. Devoto S, Biolchi S, Bruschi VM, González Díez A, Mantovani M, Pasuto A, Piacentini D, Schembri JA, Soldati M (2013a) Landslides along the north-west coast of the Island of Malta. In: Margottini C, Canuti P, Sassa K (eds) Landslide Science and Practice, vol 1. Springer-Verlag, Berlin Heidelberg, pp 57–63. doi: 10.1007/978-3-642-31325-7-7 CrossRefGoogle Scholar
  15. Devoto S, Forte E, Mantovani M, Diez A, Mocnik A, Pasuto A, Piacentini D, Soldati M (2013b) Integrated monitoring of lateral spreading phenomena along the north-west coast of Malta. In: Margottini C, Canuti P, Sassa K (eds) Proceedings of the Second World Landslide Forum, 3–9 October 2011. Rome. Springer-Verlag, Berlin Heidelberg, pp 235–241. doi: 10.1007/978-3-642-31445-2-30 CrossRefGoogle Scholar
  16. Devoto S, Mantovani M, Pasuto A, Piacentini D, Soldati M (2015) Long-term monitoring to support landslide inventory maps: the case of the north-western coast of the Island of Malta. In: Lollino G (ed) Engineering Geology for Society and Territory, vol 2. Springer International Publishing Switzerland, Cham, pp 1307–1310. doi: 10.1007/978-3-319-09057-3_229 CrossRefGoogle Scholar
  17. Evans JM (2001) Calibration of the production rates of cosmogenic 36Cl from potassium, Canberra. PhD Dissertation, The Australian National University unpublishedGoogle Scholar
  18. Fabryka-Martin J.T. (1988) Production of radionuclides in the Earth and their hydrogeologic significance, with emphasis on chlorine-36 and iodine-129. PhD thesis, The University of Arizona. http://arizona.openrepository.com/arizona/handle/10150/191140. Accessed 22 Sept 2017
  19. Foglini F, Prampolini M, Micallef A, Angeletti L, Vandelli V, Deidun A, Soldati M, Taviani M (2016) Late Quaternary coastal landscape morphology and evolution of the Maltese Islands (Mediterranean Sea) reconstructed from high resolution seafloor data. In: Harff J, Bailey G, Lüth F (eds) Geology and Archaeology: Submerged landscapes of the continental shelf, vol 411. Geological Society, London, Special Publications, pp 77–95. doi: 10.1144/SP411.12 CrossRefGoogle Scholar
  20. Furlani S, Antonioli F, Biolchi S, Gambin T, Gauci R, Lo Presti V, Anzidei M, Devoto S, Palombo M, Sulli A (2013) Holocene sea level change in Malta. Quat Int 288:146–157. doi: 10.1016/j.quaint.2012.02.038 CrossRefGoogle Scholar
  21. Gutiérrez F, Soldati M, Audemard F, Balteanu D (2010) Recent advances in landslide investigation: issues and perspectives. Geomorphology 124(3–4):95–101. doi: 10.1016/j.geomorph.2010.10.020 CrossRefGoogle Scholar
  22. Hartvich F, Blahut J, Stemberk J (2017) Rock avalanche and rock glacier: A compound landform study from Hornsund, Svalbard. Geomorphology 276:244–256. doi: 10.1016/j.geomorph.2016.10.008 CrossRefGoogle Scholar
  23. Hunt CO (1997) Quaternary deposits in Maltese Islands: a microcosm of environmental change in Mediterranean lands. Geo Journal 41(2):101–109Google Scholar
  24. Hunt CO, Schembri PJ (1999) Quaternary environments and biogeography of the Maltese Islands. In: Mifsud A, Savona Ventura C (eds) Facets of the Maltese prehistory. Malta, The Prehistoric Society of Malta, pp 41–75Google Scholar
  25. Ivy-Ochs S, Kober F (2008) Surface exposure dating with cosmogenic nuclides. Quaternary Sci J 57(1–2):179–209.  https://doi.org/10.23689/fidgeo-1280
  26. Ivy-Ochs S, Martin S, Campedel P, Hippe K, Alfimov V, Vockenhuber C, Andreotti E, Carugati G, Pasqual D, Rigo M, Viganò A (2017) Geomorphology and age of the Marocche di Dro rock avalanches (Trentino, Italy). Quaternary Science Reviews 169:188-205.  https://doi.org/10.1016/j.quascirev.2017.05.014 CrossRefGoogle Scholar
  27. Jongsma D, Van Hinte EJ, Woodside JM (1985) Geologic structure and neotectonics of the North African Continental Margin south of Sicily. Mar Pet Geol 2:156–179. doi: 10.1016/0264-8172(85)90005-4 CrossRefGoogle Scholar
  28. Lambeck K, Antonioli F, Anzidei M, Ferranti L, Leoni G, Silenzi S (2011) Sea level change along the Italian coasts during Holocene and prediction for the future. Quat Int 232:250–257. doi: 10.1016/j.quaint.2010.04.026 CrossRefGoogle Scholar
  29. Lambeck K, Chappell J (2001) Sea level change through the last glacial cycle. Science 292:679–686. doi: 10.1126/science.1059549 CrossRefGoogle Scholar
  30. Lambeck K, Yokoyama Y, Purcell T (2002) Into and out of the Last Glacial Maximum: sea-level change during Oxygen Isotope Stages 3 and 2. Quat Sci Rev 21:343–360. doi: 10.1016/S0277-3791(01)00071-3 CrossRefGoogle Scholar
  31. Lang A, Moya J, Corominas J, Schrott L, Dikau R (1999) Classical and new dating methods for assessing the temporal occurrence of mass movements. Geomorphology 30:33–52. doi: 10.1016/S0169-555X(99)00043-4 CrossRefGoogle Scholar
  32. Le Roux O, Schwartz S, Gamond JF, Jongmans D, Bourlès D, Braucher R, Mahaney W, Carcaillet J, Leanni L (2009) CRE dating on the head scarp of a major landslide (Sechilienne, French Alps), age constraints on Holocene kinematics. Earth Planet Sc Lett 280:239–245. doi: 10.1016/j.epsl.2009.01.034 CrossRefGoogle Scholar
  33. Liu B, Phillips FM, Fabryka-Martin JT, Fowler MM, Stone WD (1994) Cosmogenic 36Cl accumulation in unstable landforms. Effects of the thermal neutron distribution. Water Resour Res 30:3115–3125. doi: 10.1029/94WR00761 CrossRefGoogle Scholar
  34. Magri O, Mantovani M, Pasuto A, Soldati M (2008) Geomorphological investigation and monitoring of lateral spreading along the north-west coast of Malta. Geogr Fis Din Quat 31(2):171–180Google Scholar
  35. Malta International Airport weather station: https://www.maltairport.com/weather/
  36. Mantovani M, Devoto S, Forte E, Mocnik A, Pasuto A, Piacentini D, Soldati M (2013) A multidisciplinary approach for rock spreading and block sliding investigation in the northwestern coast of Malta. Landslides 10(5):611–622. doi: 10.1007/s10346-012-0347-3 CrossRefGoogle Scholar
  37. Mantovani M, Devoto S, Piacentini D, Prampolini M, Soldati M, Pasuto A (2016) Advanced SAR interferometric analysis to support geomorphological interpretation of slow-moving coastal landslides (Malta, Mediterranean Sea). Remote Sens 8(443). doi: 10.3390/rs8060443 CrossRefGoogle Scholar
  38. Masarik J, Reedy RC (1995) Terrestrial cosmogenic nuclide production systematics calculated from numerical simulations. Earth Planet Sc Lett 136:381–395. doi: 10.1016/0012-821X(95)00169-D CrossRefGoogle Scholar
  39. McIntosh PD, Barrows TT (2011) Morphology and age of bouldery landslide deposits in forested dolerite terrain, Nicholas Range, Tasmania. Z Geomorphol 55(3):383–393. doi: 10.1127/0372-8854/2011/0044 CrossRefGoogle Scholar
  40. Pánek T (2015) Recent progress in landslide dating: a global overview. Pr Phys Geogr 39(2):168–198. doi: 10.1177/0309133314550671 CrossRefGoogle Scholar
  41. Pasuto A, Soldati M (2013) Lateral spreading. In: Shroder JF, Marston RA, Stoffel M (eds) Treatise on Geomorphology, Mountain and Hillslope Geomorphology, vol 7. Academic Press, San Diego, pp 239–248. doi: 10.1016/B978-0-12-374739-6.00173-1 CrossRefGoogle Scholar
  42. Pedley HM, Clarke MH, Galea P (2002) Limestone Isles in a crystal: The Geology of the Maltese Islands. Publisher Enterprises Group, MaltaGoogle Scholar
  43. Phillips FM, Stone WD, Fabryka-Martin JT (2001) An improved approach to calculating low-energy cosmic-ray neutron fluxes near the land/atmosphere interface. Chem Geol 175:689–701. doi: 10.1016/S0009-2541(00)00329-6 CrossRefGoogle Scholar
  44. Piacentini D, Devoto S, Mantovani M, Pasuto A, Prampolini M, Soldati M (2015) Landslide susceptibility modeling assisted by Persistent Scatterers Interferometry (PSI): an example from the northwestern coast of Malta. Nat Hazards 78:681–697. doi: 10.1007/s11069-015-1740-8 CrossRefGoogle Scholar
  45. Prager C, Zangerl C, Patzel G, Brandner R (2008) Age distribution of fossil landslides in the Tyrol (Austria) and its surrounding areas. Nat Hazards Earth Syst Sci 8(2):377–407. doi: 10.5194/nhess-8-377-2008 CrossRefGoogle Scholar
  46. Prampolini M, Foglini F, Biolchi S, Devoto S, Angelini S, Soldati M (2017) Integrated geomorphological map of emerged and submerged areas of northern Malta and Comino (central Mediterranean Sea). J Maps 13(2):457–469. doi: 10.1080/17445647.2017.1327507 CrossRefGoogle Scholar
  47. Sewell RJ, Barrows TT, Campbell SDG, Fifield LK (2006) Exposure dating (10Be, 26Al) of natural terrain landslides in Hong Kong, China. In: Siame LL, Bourlès DL, Brown ET (eds) Application of cosmogenic nuclides to the study of Earth surface processes: The practice and the potential, vol 415. Geological Society of America, Special Paper, pp 131–146. doi: 10.1130/2006.2415(08)
  48. Siddall M, Rohling EJ, Almogi-Labin A, Hemleben C, Meischner D, Schmelzer I, Smeed DA (2003) Sea-level fluctuations during the last glacial cycle. Nature 423:853–858. doi: 10.1038/nature01690 CrossRefGoogle Scholar
  49. Soldati M, Borgatti L, Cavallin A, De Amicis M, Frigerio S, Giardino M, Martara G, Pellegrini GB, Ravazzi C, Surian N, Tellini C, Zanchi A, in collaboration with: Alberto W, Albanese D, Chelli A, Corsini A, Marchetti M, Palomba M, Panizza M (2006) Geomorphological evolution of slopes and climate changes in northern Italy during the Late Quaternary: spatial and temporal distribution of landslides and landscape sensitivity implications. Geogr Fis Din Quat 29:165–183Google Scholar
  50. Soldati M, Devoto S, Foglini F, Forte E, Mantovani M, Pasuto A, Piacentini D, Prampolini M (2015) An integrated approach for landslide hazard assessment on the NW coast of Malta. In: Galea P, Borg RP, Farrugia D, Agius MR, D'Amico S, Torpiano A, Bonello M (eds) Proceedings of the International Conference: Georisks in the Mediterranean and their mitigation. Gutemberg Press Ltd, Malta, pp 160-167Google Scholar
  51. Stone JOH (2000) Air pressure and cosmogenic isotope production. J Geophyl Res 105:23753–23759. doi: 10.1029/2000JB900181 CrossRefGoogle Scholar
  52. Stone JOH, Allan GL, Fifield LK, Cresswell RG (1996a) Cosmogenic chlorine-36 from calcium spallation. Geochim Cosmochim Ac 60:555–561. doi: 10.1016/0016-7037(95)00429-7 CrossRefGoogle Scholar
  53. Stone JOH, Evans J, Fifield LK, Cresswell RG, Allan GL (1996b) Cosmogenic chlorine-36 production rates from calcium and potassium. Radiocarbon 38(1):170–171Google Scholar
  54. Stone JOH, Evans JM, Fifield LK, Allan GL, Cresswell RG (1998) Cosmogenic chlorine-36 production in calcite by muons. Geochim Cosmochim Ac 62:433–454. doi: 10.1016/S0016-7037(97)00369-4 CrossRefGoogle Scholar
  55. Walker HJ, McGraw M (2010) Geomorphology and coastal hazards. In: Alcántara-Ayala I, Goudie AS (eds) Geomorphological hazards and disaster prevention. Cambridge University Press, Cambridge, pp 129–144CrossRefGoogle Scholar
  56. Zerathe S, Lebourg T, Braucher R, Bourlès D (2014) Mid-Holocene cluster of large-scale landslides revealed in the Southwestern Alps by 36Cl dating: Insight on an Alpine-scale landslide activity. Quat Sci Rev 90:106–127. doi: 10.1016/j.quascirev.2014.02.015 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Chemical and Geological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
  2. 2.Department of GeographyUniversity of ExeterExeterUK
  3. 3.National Council of ResearchInstitute for Marine Sciences of BolognaBolognaItaly
  4. 4.Department of Nuclear Physics, Research School of Physical Sciences and EngineeringThe Australian National UniversityCanberraAustralia

Personalised recommendations