Advertisement

Journal of Coastal Conservation

, Volume 21, Issue 6, pp 829–836 | Cite as

You can’t run but you can hide: the negative influence of human presence on mid-sized mammals on an Atlantic island

  • Isadora Cristina Motta Lessa
  • Átilla Colombo FerreguettiEmail author
  • Maja Kajin
  • Christopher R. Dickman
  • Helena Godoy Bergallo
Article

Abstract

Here, we report the results of a camera-trapping survey of mid-sized (1–50 kg) mammals on an oceanic Atlantic forest island in Brazil. Despite 80% of the island being formally reserved for conservation, the island’s northern areas support a small, but rapidly growing human population that we expected would disturb the mammals and their foraging and movement behaviors. Hunting activities are also more frequent and severe on the north side of the island, closer to the villages. We tested the following hypothesis: the probability of occupancy, detectability, and abundance of mid-sized mammals will be higher in less-disturbed areas on southern parts of the island than in more-disturbed areas to the north. Ordination using multi-dimensional scaling (MDS) highlighted that mammal assemblages were differentiated between the northern and southern slope areas, and regression analyses showed MDS scores to be associated strongly with an index of human population density. Occupancy models for Didelphis aurita, Dasypus novemcinctus, Dasyprocta leporina, and Cuniculus paca showed no effect of habitat covariates, but there were marked effects of human activity impact on the detection probability of all species, except D. aurita. Species detections and local abundances were higher in the less disturbed southern parts of the island. Our results support the notion that mid-sized mammals will change their movement and foraging behaviors as a function of human activities, even inside reserved, protected areas.

Keywords

Atlantic forest Camera-trapping Detectability Environmental factors Human impact Mammal assemblages 

Notes

Acknowledgments

We thank FAPERJ (E-26/103.016/2011 to HGB), and CNPq (307715/2009-4 to HGB) for financing the study. I. Lessa thanks the Brazilian Ministry of Education (CAPES) for a MSc scholarship to the Post-Graduate Program of Ecology and Evolution of the University of Rio de Janeiro State. We are also thankful to the managers of PEIG, INEA and all researchers that contributed to this work, especially José Mello, Mariana Soares and Rodrigo Salles.

References

  1. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) 2nd international symposium on information theory. Akademia Kiado, Budapest, pp 267–281Google Scholar
  2. Alho CJR, Schneider M, Vasconcellos LA (2002) Degree of threat to the biological diversity in the Ilha Grande State Park (RJ) and guidelines for conservation. Braz J Biol 62:375–385CrossRefGoogle Scholar
  3. Almeida-Neto M, Campassi F, Galetti M, Jordano P, Oliveira-Filho A (2008) Vertebrate dispersal syndromes along the Atlantic forest: broad-scale patterns and macroecological correlates. Glob Ecol Biogeogr 17:503–513CrossRefGoogle Scholar
  4. Bergallo HG, Rocha CFD, Alves MAS, Van Sluys M (2000) (ed). A fauna ameaçada de extinção do Estado do Rio de Janeiro. 1. ed. Rio de Janeiro: EdUERJ, v. 1. 166pGoogle Scholar
  5. Bray RJ, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349CrossRefGoogle Scholar
  6. Bruner AG, Gullison RE, Rice RE, Da Fonseca GAB (2001) Effectiveness of park in protecting tropical biodiversity. Science 291:125–128CrossRefGoogle Scholar
  7. Cáceres NC, Monteiro-Filho ELA (2001) Food habits, home range and activity of Didelphis aurita (Mammalia, Marsupialia) in a forest fragment of southern Brazil. Stud Neotropical Fauna Environ 36:85–92CrossRefGoogle Scholar
  8. Canale GR, Peres CA, Guidorizzi CE, Gatto CAF, Kierulff MCM (2012) Pervasive defaunation of forest remnants in a tropical biodiversity hotspot. PLoS One 7:e41671CrossRefGoogle Scholar
  9. Chiarello, AG (1999) Effects of fragmentation of the Atlantic forest on mammal communities in south-eastern Brazil biol Conserv. 89: 71-82Google Scholar
  10. Chiarello AG (2000) Density and population size of mammals in remnants of Brazilian Atlantic forest. Conserv Biol 14:1649–1657CrossRefGoogle Scholar
  11. Cullen L Jr, Bodmer RE, Valladares Pádua C (2000) Effects of hunting in habitat fragments of the Atlantic forest. Braz Biol Conserv 95:49–56CrossRefGoogle Scholar
  12. DeFries R, Hansen A, Newton AC, Hansen MC (2005) Increasing isolation of protected areas in tropical forests over the past 20 years. Ecol Appl 15:19–26CrossRefGoogle Scholar
  13. Ferreguetti AC, Tomas WM, Bergallo HG (2015) Density, occupancy, and activity pattern of two sympatric deer (Mazama) in the Atlantic Forest, Brazil. J Mammal 96:1245–1254Google Scholar
  14. Ferreguetti AC, Tomas WM, Bergallo HG (2016) Density and niche segregation of two armadillo species (Xenarthra: Dasypodidae) in the Vale Natural Reserve, Brazil. Mamm Biol 81:138–145Google Scholar
  15. Ferreguetti AC, Tomas WM, Bergallo HG (2017) Density, occupancy, and detectability of lowland tapirs, Tapirus terrestris, in Vale Natural Reserve, southeastern Brazil. J Mammal 98:114–123Google Scholar
  16. Galetti M, Dirzo R (2013) Ecological and evolutionary consequences of living in a defaunated world. Biol Conserv 163:1–6CrossRefGoogle Scholar
  17. Galetti M, Fernandez JC (1998) Palm heart harvesting in the Brazilian Atlantic forest changes in industry structure and the illegal trade. Ecol Appl 35:294–301CrossRefGoogle Scholar
  18. Galetti M, Keuroghlian A, Hanada L, Morato MI (2001) Frugivory and seed dispersal by the lowland tapir (Tapirus terrestris) in southeast Brazil. Biotropica 33:723–726CrossRefGoogle Scholar
  19. Hines JE (2006) PRESENCE – software to estimate patch occupancy and related parameters. USGS-PWRC Available: http://www.mbr-pwrc.usgs.gov/software/presence.html
  20. Howe HF, Smallwood J (1982) Ecology of seed dispersal. Annu Rev Ecol Syst 13:201–223CrossRefGoogle Scholar
  21. IBGE – Instituto Brasileiro de Geografia e Estatística (2010). Atlas do censo demográfico 2010. IBGE, Rio de Janeiro 2013; pp 156Google Scholar
  22. INEA – Instituto Estadual do Ambiente (2010) Plano de Manejo do Parque Estadual da Ilha Grande. INEA, Rio de Janeiro, pp 585Google Scholar
  23. Jenkins, C.N., Pimm, S.L. (2006) Definindo prioridades de conservação em um hotspot de biodiversidade global (Defining conservation priorities in a global biodiversity hotspot). Chapter in Biologia da Conservação: Essências. Rocha, C.F.D.; H.G. Bergallo; M. Van Sluys & M.A.S. Alves. (eds.). RiMa Editora, São CarlosGoogle Scholar
  24. Laurance WF et al (2012) Averting biodiversity collapse in tropical forest protected areas. Nature 489:290–294CrossRefGoogle Scholar
  25. Lessa ICM, Bergallo HG (2012) Modelling the population control of the domestic cat: an example from an island in Brazil. Braz J Biol 72:445–452CrossRefGoogle Scholar
  26. Lomolino MV, Riddle BR, Brown JH (2006) Biogeography, third edn. Sinauer, SunderlandGoogle Scholar
  27. Lynam AJ et al (2013) Terrestrial activity patterns of wild cats from camera-trapping. Raffles Bull Zool 61:407–415Google Scholar
  28. Machado ABM, Drummond GM, Paglia AP (2008) Livro Vermelho da fauna brasileira ameaçada de extinção. MMA, Brasília, 1420 pGoogle Scholar
  29. MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255CrossRefGoogle Scholar
  30. Mittermeier RA, Myers N, Thomsen JB, Da Fonseca GAB, Olivieri S (1998) Biodiversity hotspots and major tropical wilderness areas: approaches to setting conservation priorities. Conserv Biol 12:516–520CrossRefGoogle Scholar
  31. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefGoogle Scholar
  32. Oksanen J, Blanchet, FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Vegan: community ecology package. R package version 2.0–4Google Scholar
  33. Oliveira RR (2002) Ação antrópica e resultantes sobre a estrutura da vegetação e composição da Mata Atlântica na Ilha Grande-RJ. Rodriguésia 53:33–58Google Scholar
  34. Prugh LR, Hodges KE, Sinclair ARE, Brashares JS (2008) Effect of habitat area and isolation on fragmented animal populations. Proc Natl Acad Sci U S A 105:20770–20775CrossRefGoogle Scholar
  35. Reis NR, Peracchi AL, Pedro WA, Lima IP (2011) Mamíferos do Brasil. Universidade Estadual de Londrina, LondrinaGoogle Scholar
  36. Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153CrossRefGoogle Scholar
  37. Royle JA, Nichols JD (2003) Estimating abundance from repeated presence-absence data or point counts. Ecology 84:777–790CrossRefGoogle Scholar
  38. Sastre C (1982) Notion de clímax em régions neótropicales. Compte rendu des Seances Soc Biogeog 58:117–123Google Scholar
  39. Schupp EW, Milleron T, Russo SE, Levey DJ, Silva WR, Galetti M (2000) Dissemination limitation and the origin and maintenance of species-rich tropical forests. In: Levey, D.J., Silva, W.R., Galetti, M. (Eds). Seed dispersal and Frugivory: ecology, evolution and conservation. Third International Symposium-Workshop on frugivores and seed dispersal, São Pedro, Brazil, 6-11 august 2000. CABI publishing, pp 19-33. doi:  10.1079/9780851995250.0019
  40. TEAM Network (2011) Terrestrial vertebrate protocol: implementation manual, v. 3.1. Tropical ecology, assessment and monitoring network. Center for Applied Biodiversity Science, Conservation International, ArlingtonGoogle Scholar
  41. Urquiza-Haas T, Peres CA, Dolman PM (2009) Regional scale effects of human density and forest disturbance on large-bodied vertebrates throughout the Yucatán Peninsula, Mexico. Biol Conserv 142:134–148CrossRefGoogle Scholar
  42. Vine SJ, Crowther MS, Lapidge SJ, Dickman CR, Mooney N, Piggott MP, English AW (2009) Comparison of methods to detect rare and cryptic species: a case study using the red fox (Vulpes vulpes). Wildl Res 36:436–446CrossRefGoogle Scholar
  43. Wallace AR (1869) The Malay archipelago. MacMillan, LondonGoogle Scholar
  44. Wetzel RM, Mondolfi E (1979) The subgenera and species of long-nosed armadillos, genus Dasypus L. In: Eisenberg JF (ed) Vertebrate ecology in the Northern Neotropics. Smithsonian Institution Press, Washington, D.C, pp 43–63Google Scholar
  45. Wright SJ, Sanchez-Azofeifa G, Portillo-Quintero C, Davies D (2007) Poverty and corruption compromise tropical forest reserves. Ecol Appl 17:1259–1266CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Isadora Cristina Motta Lessa
    • 1
  • Átilla Colombo Ferreguetti
    • 2
    Email author
  • Maja Kajin
    • 2
  • Christopher R. Dickman
    • 3
  • Helena Godoy Bergallo
    • 2
  1. 1.Department of EcologyInstitute of Biology, Brasília UniversityBrasíliaBrazil
  2. 2.Department of EcologyInstitute of Biology Roberto Alcantara Gomes – IBRAG, Rio de Janeiro State University – UERJRio de JaneiroBrazil
  3. 3.School of Life and Environmental Sciences, University of SydneySydneyAustralia

Personalised recommendations