Advertisement

Journal of Coastal Conservation

, Volume 22, Issue 1, pp 71–78 | Cite as

Are Wadden Sea tidal systems with a higher tidal range more resilient against sea level rise?

  • Jacobus L.A. HofstedeEmail author
  • Johannes Becherer
  • Hans Burchard
Article

Abstract

Accelerated sea level rise may have serious implications for the Wadden Sea ecosystem in its present state. If sediment accumulation rates on the extensive intertidal flats stay behind sea level rise, the flats will eventually submerge. Drowning of the flats has negative consequences for nature conservation and for coastal risk management. Based upon an evaluation of steady state relations for Wadden Sea tidal basins, Hofstede (Zeitschrift für Geomorphologie 59(3): 377-391, 2015) postulated that the capacity of these basins to balance sea level rise by accumulation on intertidal flats seems positively related to mean tidal range. In the present study, morphodynamical simulations with a numerical model were performed for two tidal basins in the German Wadden Sea to verify the empirically established hypothesis. The following conclusions are established. Larger mean tidal range improves the capacity of Wadden Sea tidal basins to balance sea level rise. Wadden Sea intertidal flats are effective sediment sinks and seem quite resilient against (higher rates of) sea level rise. Finally, subtidal gullies may constitute a significant sediment source for accumulation on intertidal flats in response to sea level rise. With respect to the limited comparability of the two investigated tidal systems, morphodynamical modelling of all Wadden Sea tidal systems should be conducted.

Keywords

Wadden Sea Sea level rise Tidal basins Inter-tidal flats Coastal geomorphology Morphodynamical modelling 

Abbreviations

GETM

General Estuarine Transport Model (www.getm.eu)

SLR

Sea level rise

MTR

Mean tidal range

MLW

Mean tidal low water level

MHW

Mean tidal high water level

MSL

Mean sea level

ISV

Inter-tidal sediment volume (amount of sediment between MLW and MHW)

P

Tidal prism (amount of sea water between MLW and MHW at MHW time, i.e., the water volume that enters and leaves the tidal basin with each tidal phase)

Notes

Acknowledgements

This paper has been produced in the context of a trilateral cooperation among German, Dutch and Danish coastal administrations on the future morphological development of the Wadden Sea under climate change. The authors want to thank the partners from Deltares (NL) and Kystdirektoratet (DK) for constructive discussions.

References

  1. Becherer, J., Graewe, U., Purkiani, K., Schulz, E. & Burchard, H. (2015): Simulation der morphologischen Entwicklung in tidalen Systemen der Westküste von Schleswig-Holstein. Research cooperation among IOW and MELUR-SH, Warnemünde: 1–65 (unpublished)Google Scholar
  2. Becherer J, Flöser G, Umlauf L, Burchard H (2016) Estuarine circulation versus tidal pumping: Sediment transport in a well-mixed tidal inlet. J Geophys Res Oceans 121:6251–6270. doi: 10.1002/2016JC011640 CrossRefGoogle Scholar
  3. Biegel, E.J. (1992): Impact of sea-level rise on the morphology of the Wadden Sea within the scope of its ecological functioning. Investigations on empirical morphological relations, Annex Data report ISOS*2. Rijkswaterstaat Dienst Getijdewateren, ISOS*2 project, phase 2, 18 ppGoogle Scholar
  4. Burchard, H., & Bolding, K. (2002): GETM—A general estuarine transport model. European Commission Tech. Rep. EUR 20253 EN, 157 ppGoogle Scholar
  5. Burchard H, Flöser G, Staneva JV, Riethmüller R, Badewien TH (2008) Impact of density gradients on net sediment transport into the Wadden Sea. J Phys Oceanogr 38:566–587CrossRefGoogle Scholar
  6. Burchard H, Schuttelaars HM, Geyer WR (2013) Residual sediment uxes in weakly-to-periodically stratified estuaries and tidal inlets. J Phys Oceanogr 43:1841–1861CrossRefGoogle Scholar
  7. CPSL (2001) Final Report of the trilateral working group on coastal protection and sea level rise - CPSL. Wadden Sea Ecosyst 13:1–63Google Scholar
  8. CPSL (2005) Coastal Protection and Sea Level Rise – Solutions for coastal protection in the Wadden Sea region. Wadden Sea Ecosyst 21:1–47Google Scholar
  9. CPSL (2010) CPSL Third Report - the role of spatial planning and sediment in coastal risk management. Wadden Sea Ecosyst 28:1–51Google Scholar
  10. CWSS and World Heritage Nomination Project Group (2008) Nomination of the Dutch-German Wadden Sea as world heritage site. Wadden Sea Ecosyst 24:1–200Google Scholar
  11. Davis, R.A. (2013): A New Look at Barrier-Inlet Morphodynamics. Journal of Coastal Research Special Issue 69 – Proceedings of the Symposium in Applied Coastal Geomorphology to Honor Miles O. Hayes: 1–12Google Scholar
  12. Dissanayake DMPK, Ranasinghe R, Roelvink JA (2012) The morphological response of large tidal inlet/basin systems to relative sea level rise. Clim Chang 113(2):253–276CrossRefGoogle Scholar
  13. Ehlers J (1988) The morphodynamics of the Wadden Sea. A. Balkema Publishers, Rotterdam, The Netherlands, 397 ppGoogle Scholar
  14. Engelund F, Hansen E (1972) A monograph on sediment transport. Teknisk Forlag, CopenhagenGoogle Scholar
  15. Hayes MO (1979) Barrier island morphology as a function of tidal and wave regime. In: Leatherman SP (ed) Barrier Islands. Acad. Press, New York, pp. 1–29Google Scholar
  16. Herrling G, Winter C (2014) Morphological and sedimentological response of a mixed-energy barrier island tidal inlet to storm and fair-weather conditions, Earth Surf. Dynam 2:363–382Google Scholar
  17. Hofstede JLA (2015) Theoretical considerations on how Wadden Sea tidal basins may react to accelerated sea level rise. Z Geomorphol 59(3):377–391CrossRefGoogle Scholar
  18. Hofstede, J.L.A. & Stock M. (2016): Climate change adaptation in the Schleswig-Holstein sector of the Wadden Sea: an integrated State Governmental strategy. Journal of Coastal Conservation, this volume, 1–9, doi: 10.1007/s11852–016–0433-0
  19. Lesser G, Roelvink J, Van Kester J, Stelling G (2004) Development and validation of a three-dimensional morphological model. Coast Eng 51(8):883–915CrossRefGoogle Scholar
  20. Oost AP (1995) Dynamics and sedimentary development of the Dutch Wadden Sea with emphasis on the Frisian Inlet. Geol Ultraiect 126Google Scholar
  21. Postma H (1961) Transport and accumulation of suspended matter in the Dutch Wadden Sea. Neth J Sea Res 1:148–190CrossRefGoogle Scholar
  22. Purkiani, K., Becherer, J., Klingbeil, K. & Burchard, H. (2016): Variability of estuarine circulation in a tidally energetic inlet with curvature, J. Geophys. Res., in printGoogle Scholar
  23. Scully ME, Friedrichs CT, Brubaker JM (2005) Control of estuarine stratification and mixing by wind-induced straining of the estuarine density field. Estuaries 28:321–326CrossRefGoogle Scholar
  24. Siefert W, Lassen H (1985) Gesamtdarstellung der Wasserstandsverhältnisse im Küstenvorfeld der Deutschen Bucht nach neuen Pegelauswertungen. Die Küste 42:1–77Google Scholar
  25. Soulsby, R. (1997): Dynamics of marine sands: a manual for practical applications. Thomas TelfordGoogle Scholar
  26. Spiegel F (1997) Zur Morphologie der Tidebecken im schleswig-holsteinischen Wattenmeer. Die Küste 59:115–142Google Scholar
  27. Van Goor MA, Zitman TJ, Wang ZB, Stive MJF (2003) Impact of sea level rise on the morphological stability of tidal inlets. Mar Geol 202(3–4):211–227CrossRefGoogle Scholar
  28. Van Straaten LMJU, Kuenen PH (1958) Tidal action as a cause of clay accumulation. J Sediment Petrol 28:406–413Google Scholar
  29. Wang, Z.B. & Van der Spek, A. (2015): Importance of mud for morphological response of tidal basins to sea level rise. Proceedings of Coastal Sediments 2015, San Diego, USAGoogle Scholar
  30. Wang ZB, Hoekstra P, Burchard H, Ridderinkhof H, De Swart HE, Stive MJF (2012) Morphodynamics of the Wadden Sea and its barrier island sys-tem. Ocean Coast Manag 68:39–57CrossRefGoogle Scholar
  31. Wang, Z.B., Townend, I.A. & Stive, M.J.F. (2014): Modelling of morphological response of tidal basins to sea-level rise revisited. Proceedings of the 17th Physics of Estuaries and Coastal Seas (PECS) conference, Porto de Galinhas, Pernambuco, BrazilGoogle Scholar
  32. Wang, Z.B., Van Maren, D.S., Ding, P.X., Yang, S.L., Van Prooijen, B.C., De Vet, P.L.M., Winterwerp, J.C., De Vriend, H.J. & Stive, M.J.F. (2015): Human impacts on morphodynamic thresholds in estuarine systems. Continental Shelf Research 111, Part B: 174–183Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Jacobus L.A. Hofstede
    • 1
    Email author
  • Johannes Becherer
    • 2
  • Hans Burchard
    • 3
  1. 1.Schleswig-Holstein Ministry of EnergyAgriculture, Environment and Rural AreasKielGermany
  2. 2.College of Earth, Ocean, and Atmospheric Sciences (CEOAS)Oregon State UniversityCorvallisUSA
  3. 3.Leibniz-Institute for Baltic Sea Research WarnemündeRostockGermany

Personalised recommendations