Advertisement

Journal of Coastal Conservation

, Volume 19, Issue 3, pp 335–343 | Cite as

Thermal ecology of five remaining populations of an endangered lizard (Liolaemus lutzae) in different restinga habitats in Brazil

  • Patrícia Almeida-SantosEmail author
  • Catia Moura Militão
  • Paulo Nogueira-Costa
  • Vanderlaine Amaral Menezes
  • Carlos Frederico Duarte Rocha
Article

Abstract

We studied the thermal ecology of five populations (Marambaia, Barra de Maricá, Praia Grande, Praia do Foguete and Praia do Peró) of the endemic and endangered liolaemid lizard Liolaemus lutzae along its geographic range in coastal Rio de Janeiro state. Our aims were to analyze to what extent populations differ in mean body temperature and to evaluate the effect of some local environmental factors (such as air and substrate temperatures in the microhabitat and wind intensity) on lizard body temperature. Lizards were manually collected during its period of activity (7 to 18 h) from late February to early April 2012 (rainy season), always under similar weather conditions (sunny days). The body and environmental temperatures as well as wind intensity were taken immediately after capture at the same point where each lizard was initially sighted. The mean body temperature of L. lutzae in activity (all populations pooled) was 33.2 ± 2.5 °C (range = 22.5–40.2; N = 242) and varied from 31.5 ± 2.6 °C (range = 25.4–36.2; N = 34) to 34.0 ± 2.2 °C (range = 29.1–39.2; N = 67), depending of the locality. However, after removing the effect of the local thermal environment no interpopulational differences remained, suggesting a relative conservativeness in body temperature for the species. Temperatures of air and substrate interact to influence body temperature of individuals locally. Air temperature decreased with the increase of wind intensity, suggesting an indirect effect of wind in lizard body temperatures. Sex or body size did not affect lizard body temperature. Mean and maximum air temperatures in Rio de Janeiro municipality show an increase since 1930’s.

Keywords

Squamata Thermoregulation Geographic variation Restinga Wind intensity Climate change 

Notes

Acknowledgments

This study was supported by grants of the Fundação O Boticário de Proteção à Natureza to the authors, by fundings of the Conselho Nacional do Desenvolvimento Científico e Tecnológico - CNPq (Processes 304791/2010-5 and 472287/2012-5) and from Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro – FAPERJ (Process E-26/102.765.2012) through the “Programa Cientistas do Nosso Estado” to CFDR. PAS and PNC received doctoral fellowships from CAPES and CMM received undergraduate scholarship from UERJ. During this study VAM received a Post-Doctoral grant from FAPERJ (100.005/2009). Currently VAM is associated to the Programa de Pós-Graduação em Ecologia from Universidade do Estado do Rio de Janeiro and receives a grant from UERJ as a Visiting Professor. We also thank VNT Borges-Júnior, MC Kiefer, M Almeida-Santos, GR Winck, D Vrcibradic, BN Cosendey and J Mascarenhas who kindly collaborated in fieldwork and/or statistical analyses. D Vrcibradic also reviewed the text providing valuable suggestions.

References

  1. Adolph SC and Porter WP (1993) Temperature, activity, and lizard life histories. Am Nat: 273–295Google Scholar
  2. Andrews RM (1998) Geographic variation in field body temperature of Sceloporus lizards. J Therm Biol :329–334Google Scholar
  3. Ariani CV, Pickles RSA, Lobo-Hajdu G, Jordan WC and Rocha CFD (2013) Mitochondrial DNA and microsatellite loci data supporting a management plan for a critically endangered lizard from Brazil. Conserv Genet :1–9Google Scholar
  4. Avery RA (1982) Field studies of body temperatures and thermoregulation. In: Gans C, Pough FH (eds) Biology of the Reptilia 12, Physiological Ecology. Academic, London, pp 93–166Google Scholar
  5. Ayers DY, Shine R (1997) Thermal influences on foraging ability: body size, posture and cooling rate of an ambush predator, the python Morelia spilota. Funct Ecol :342–347Google Scholar
  6. Bauwens D, Garland T, Castilla AM and Van Damme R (1995) Evolution of sprint speed in lacertid lizards: morphological, physiological, and behavioral covariation. Evolution :848–863Google Scholar
  7. Bergallo HG, Fidalgo ECC, Rocha CFD, Uzêda MC, Costa MB, Alves MAS, Van Sluys M, Santos MA, Costa TCC, Cozzolino ACR (2009) Estratégias e ações para a conservação da biodiversidade no Estado do Rio de Janeiro, Rio de Janeiro. Instituto Biomas, Rio de JaneiroGoogle Scholar
  8. Bogert CM (1949) Thermoregulation in reptiles: a factor in evolution. Evolution :195–211Google Scholar
  9. Bogert CM (1959) How reptiles regulate their body temperature. Sci Am: 213–221Google Scholar
  10. Bujes CS, Verrastro L (2006) Thermal biology of Liolaemus occipitalis (Squamata, Tropiduridae) in the coastal sand dunes of Rio Grande do Sul, Brazil. Braz J Biol :29–41Google Scholar
  11. Crowley SR (1985) Thermal sensitivity of sprint-running in the lizard Sceloporus undulatus: support for a conservative view of thermal physiology. Oecologia :219–225Google Scholar
  12. Eiten G (1992) Natural Brazilian vegetation types and their causes. An Acad Bras Cienc: 35–65Google Scholar
  13. Fuentes ER, Jaksic FM (1979) Activity temperatures of eight Liolaemus (Iguanidae) species in central Chile. Copeia :546–548Google Scholar
  14. Grant BW (1990) Trade-offs in activity time and physiological performance for thermoregulating desert lizards Sceloporus merriami. Ecology :2323–2333Google Scholar
  15. Hertz PE, Huey RB, Stevenson RD (1993) Evaluating temperature regulation by field-active ectotherms: the fallacy of the inappropriate question. Am Nat :796–818Google Scholar
  16. Huey RB (1982) Temperature, physiology and the ecology of reptiles. In: Gans C, Pough FH (eds) Biology of the Reptilia 12, Physiological Ecology. Academic, London, pp 25–91Google Scholar
  17. Huey RB, Pianka ER (1983) Temporal separation of activity and interspecific dietary overlap. In: Huey RB, Pianka ER, Schoener TW (eds) Lizard ecology: Studies on a Model Organism. Harvard University Press, Cambridge, pp 281–290CrossRefGoogle Scholar
  18. Huey RB, Pianka ER (2007) Lizard thermal biology: do genders differ? Am Nat :473–8Google Scholar
  19. Huey RB, Slatkin M (1976) Costs and benefits of lizard thermoregulation. Q Rev Biol :363–384Google Scholar
  20. Ibargüengoytía N, Medina M, Fernández JB, Gutiérrez JA, Tappari F and Scolaro A (2010) Thermal biology of the southernmost lizards in the world: Liolaemus sarmientoi and Liolaemus magellanicus from Patagonia, Argentina. J Therm Biol :21–27Google Scholar
  21. INMET - Instituto Nacional de Meteorologia (2015) BDMEP - Banco de Dados Meteorológicos para Ensino e Pesquisa. http://www.inmet.gov.br/projetos/rede/pesquisa. Accessed 30 Apr 2015
  22. Jaksic FM, Schwenk K (1983) Natural history observations on Liolaemus magellanicus, the southernmost lizard in the world. Herpetologica :457–461Google Scholar
  23. Kerr GD, Bull CM (2004) Field observations of extended locomotor activity at sub-optimal body temperatures in a diurnal heliothermic lizard (Tiliqua rugosa). J Zool :179–188Google Scholar
  24. Kiefer MC, Van Sluys M, Rocha CFD (2005) Body temperatures of Tropidurus torquatus (Squamata: Tropiduridae) from coastal populations: Do body temperature vary along their geographic range? J Therm Biol :449–456Google Scholar
  25. Kiefer MC, Van Sluys M and Rocha CFD (2007) Thermoregulatory behaviour in Tropidurus torquatus (Squamata, Tropiduridae) from Brazilian coastal populations: an estimate of passive and active thermoregulation in lizards. Acta Zool Stockholm :81–87Google Scholar
  26. Labra A, Bozinovic F (2002) Interplay between pregnancy and physiological thermoregulation in Liolaemus lizards. Ecoscience :421–426Google Scholar
  27. Lacerda LD, Araujo OSD, Cerqueira R, Turcq B (1984) Restingas: Origem, Estrutura e Processos. Centro Editorial da Universidade Federal Fluminense, Niterói, RJGoogle Scholar
  28. Maia-Carneiro, Dorigo TA, Rocha CFD (2012) Influences of seasonality, thermal environment and wind intensity on the thermal ecology of brazilian sand lizards in a restinga remnant. South Am J Herpetol :241–251Google Scholar
  29. Medina M, Gutiérrez JA, Scolaro A, Ibargüengoytía N (2009) Thermal responses to environmental constraints in two populations of the oviparous lizard Liolaemus bibronii in Patagonia, Argentina. J Therm Biol :32–40Google Scholar
  30. Medina M, Scolaro A, Méndez-de la Cruz FR, Sinervo B, Miles DB and Ibargüengoytía N (2012) Thermal biology of genus Liolaemus: a phylogenetic approach reveals advantages of the genus to survive climate change. J Therm Biol :579–586Google Scholar
  31. Menezes VA, Rocha CFD (2011) Thermal ecology of five Cnemidophorus species (Squamata: Teiidae) in east coast of Brazil. J Therm Biol :232–238Google Scholar
  32. Menezes VA, Rocha CFD, Dutra GF (2000) Termorregulação no lagarto partenogenético Cnemidophorus nativo (Teiidae) em uma área de restinga do nordeste do Brasil. Rev Etol :103–109Google Scholar
  33. Miranda JP, Ricci-Lobão A, Rocha CFD (2010) Influence of structural habitat use on the thermal ecology of Gonatodes humeralis from a transitional forest in Maranhão. Zoologia :35–39Google Scholar
  34. Muehe D (1983) Consequências higroclimáticas das glaciações quaternárias no relevo costeiro a leste da Baía de Guanabara. Rev Bras Geocienc :245–252Google Scholar
  35. Perrin P (1984) Evolução da costa fluminense entre as pontas de Itacoatiara e Negra: preenchimentos e restingas. In: Lacerda LD, Araujo DSD, Cerqueira R, Turcq B (eds) Restingas: origem, estrutura e processos. Centro Editorial da Universidade Federal Fluminense/CEUFF, Niterói, pp 65–73Google Scholar
  36. Peters RH (1983) The ecological implications of body size. Cambridge University Press, New YorkCrossRefGoogle Scholar
  37. Pianka ER (1977) Reptilian species diversity. In: Gans C, Tinkle DW (eds) Biology of Reptilia. Academic, New York, pp 1–34Google Scholar
  38. Pianka ER (1986) Ecology and Natural History of Desert Lizards. Princeton University Press, PrincetonGoogle Scholar
  39. Rocha CFD (1995) Ecologia termal de Liolaemus lutzae (Sauria: Tropiduridae) em uma área de restinga do sudeste do Brasil. Rev Bras Biol :481–489Google Scholar
  40. Rocha CFD, Bergallo HG (1992) Population decrease: the case of Liolaemus lutzae, an endemic lizard of southeastern Brazil Ciência e Cultura :52–54Google Scholar
  41. Rocha CFD, Vrcibradic D (1996) Thermal ecology of two sympatric skinks (Mabuya macrorhyncha and Mabuya agilis) in a Brazilian restinga habitat. Aust J Ecol :110–113Google Scholar
  42. Rocha CFD, Araújo AFB, Vrcibradic D and Costa EMM (2000) New Cnemidophorus (Squamata; Teiidae) from coastal Rio de Janeiro state, southeastern Brazil. Copeia :501–509Google Scholar
  43. Rocha CFD, Bergallo HG, Pombal Jr. JP, Geise L, Van Sluys M, Fernandes R, Caramaschi U (2004) Fauna de anfíbios, répteis e mamíferos do estado do Rio de Janeiro, sudeste do Brasil. Pub Avul Mus Nac: 3–23Google Scholar
  44. Rocha CFD, Van Sluys M, Vrcibradic D, Kiefer MC, Menezes VA and Siqueira CC (2009a) Comportamento de termorregulação em lagartos brasileiros. Oecol Bras :115–131Google Scholar
  45. Rocha CFD, Siqueira CC, Ariani CV (2009b) The endemic and threatened lizard Liolaemus lutzae (Squamata: Liolaemidae): current geographic distribution and areas of occurrence with estimated population densities. Zoologia :454–460Google Scholar
  46. Rocha CFD, Siqueira CC, Ariani CV (2009c) A potential recovery of a population of the sand lizard Liolaemus lutzae Mertens, 1938 in an area within its range: a lizard endemic and threatened with extinction. Braz J Biol :185–187Google Scholar
  47. Rodríguez-Serrano E, Navas CA, Bozinovic F (2009) The comparative field body temperature among Liolaemus lizards: testing the static and the labile hypotheses. J Therm Biol 306–309Google Scholar
  48. Sinervo B, Méndez-de la Cruz FR, Miles DB, Heulin B, Bastiaans E, Villagrán-Santa Cruz M, Lara-Resendiz R, Martínez-Méndez N, Calderón-Espinosa ML, Meza-Lázaro RN, Gadsden H, Avila LJ, Morando M, De La Riva IJ, Sepulveda PV, Rocha CFD, Ibargüengoytía N, Puntriano CA, Massot M, Lepetz V, Oksanen TA, Chapple DG, Bauer AM, Branch WR, Clobert J and Sites JW (2010) Erosion of lizard diversity by climate change and altered thermal niches. Science :894–899Google Scholar
  49. Suguio K, Tessler MG (1984) Planícies de cordões litorâneos Quaternários do Brasil: Origem e nomenclatura. In: Lacerda LD, Araujo DSD, Cerqueira R, Turcq B (eds) Restingas: origem, estrutura e processos. Centro Editorial da Universidade Federal Fluminense/CEUFF, Niterói, pp 32–56Google Scholar
  50. Van Damme R, Bauwens D and Verheyen RF (1990) Evolutionary rigidity of thermal physiology: the case of the cool temperate lizard Lacerta vivipara. Oikos :61–67Google Scholar
  51. Winck GR, Almeida-Santos P, Rocha CFD (2014) Potential distribution of the endangered endemic lizard Liolaemus lutzae Mertens, 1938 (Liolaemidae): are there other suitable areas for a geographically restricted species? Braz J Biol :338–348Google Scholar
  52. Zar JH (1999) Biostatistical Analysis. Prentice Hall, Upper Saddle RiverGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Patrícia Almeida-Santos
    • 1
    Email author
  • Catia Moura Militão
    • 1
  • Paulo Nogueira-Costa
    • 1
  • Vanderlaine Amaral Menezes
    • 1
  • Carlos Frederico Duarte Rocha
    • 1
  1. 1.Laboratório de Vertebrados, Departamento de EcologiaUniversidade do Estado do Rio de Janeiro/UERJRio de JaneiroBrasil

Personalised recommendations