Journal of Coastal Conservation

, Volume 19, Issue 2, pp 107–118 | Cite as

Remote sensing of intertidal habitats predicts West Indian topsnail population expansion but reveals scale-dependent bias

  • Erin L. Meyer
  • Nicholas J. Matzke
  • Simon J. Williams
Article

Abstract

High-resolution imagery is lacking for much of the West Indies, impeding accurate intertidal habitat assessments and conservation planning. The West Indian topsnail, which inhabits rocky shores, is an important, regional fishery. It was overfished to extinction in Bermuda but reintroduced in 1982. In this study, we estimate potential population size through habitat mapping using high-resolution imagery and ground-based survey data. We also test the effects of image resolution and map scale on intertidal habitat assessments. The coastline of Bermuda was mapped as a linear feature (1:500) using high-resolution imagery. Topsnail population size was predicted using length of preferred habitat and population density. With the comprehensive map as ground-truth, effects of scale were assessed in two ways: supervised classification of low-resolution imagery and progressive map scale coarsening (Douglas-Peuker simplification). Bermuda’s coastline is 296 km at this map scale, 50 % of which is rocky shore. Topsnail population could expand significantly if all preferred habitat is occupied. However, image resolution and map scale drastically affect mapping robustness. Unsurprisingly, automated classifiers poorly distinguished narrow intertidal habitats. More disturbingly, coarsening map scale differentially affected habitats. Fine-scale mapping enabled by high-resolution imagery is vital for intertidal conservation planning. Limitations of low-resolution imagery and scale-dependent biases are pertinent beyond intertidal habitats. Numerous predominantly linear habitats may be especially sensitive to sea-level rise and other effects of climate change, so careful consideration of the effects of scale on habitat assessments and the use of high-resolution imagery are strongly recommended.

Keywords

Bermuda Cittarium pica Conservation biogeography Intertidal Remote sensing Scale dependence 

Supplementary material

11852_2014_371_MOESM1_ESM.doc (180 kb)
Online Resource 1Coastal outline of Bermuda broken into seven geographic regions for windward versus leeward delineation. (DOC 180 kb)
11852_2014_371_MOESM2_ESM.doc (8.6 mb)
Online Resource 2Detailed methods and results (e.g., summary tables and confusion matrices) for 12 classification methods for supervised classification of the Bermuda coastline. (DOC 8780 kb)

References

  1. Bacchiocchi F, Airoldi L (2003) Distribution and dynamics of epibiota on hard structures for coastal protection. Estuar Coast Shelf Sci 56(5–6):1157–1166. doi:10.1016/s0272-7714(02)00322-0 CrossRefGoogle Scholar
  2. Banks SA, Skilleter GA (2002) Mapping intertidal habitats and an evaluation of their conservation status in Queensland, Australia. Ocean Coast Manag 45:485–509CrossRefGoogle Scholar
  3. Belluco E, Camuffo M, Ferrari S, Modenese L, Silvestri S, Marani A, Marani M (2006) Mapping salt-marsh vegetation by multispectral and hyperspectral remote sensing. Remote Sens Environ 105(1):54–67. doi:10.1016/j.rse.2006.06.006 CrossRefGoogle Scholar
  4. Bickley E, Rand T (1982) Reintroduction of West Indian top-shells on Bermuda. Mon Bull Bermuda Dep Agric Fish 53(8):64–66Google Scholar
  5. Bivand R, Rundel C (2012) Interface to geometry engine - open source (GEOS). 0.2-1 ednGoogle Scholar
  6. Bretz JH (1960) Bermuda: a partially drowned, late mature, Pleistocene karst. Geol Soc Am Bull 71(12):1729. doi:10.1130/0016-7606(1960)71[1729:bapdlm]2.0.co;2 CrossRefGoogle Scholar
  7. Bryson M, Johnson-Roberson M, Murphy RJ, Bongiorno D (2013) Kite aerial photography for low-cost, ultra-high spatial resolution multi-spectral mapping of intertidal landscapes. PLoS One 8(9):e73550. doi:10.1371/journal.pone.0073550 CrossRefGoogle Scholar
  8. Buermann W, Saatchi S, Smith TB, Zutta BR, Chaves JA, Milá B, Graham CH (2008) Predicting species distributions across the Amazonian and Andean regions using remote sensing data. J Biogeogr 35(7):1160–1176. doi:10.1111/j.1365-2699.2007.01858.x CrossRefGoogle Scholar
  9. Cattell N (2000) Population survey of the geographical and age distribution of the West Indian topshell, Cittarium pica, in Bermuda. Bermuda Biodiversity Project - Student Project Reports. Department of Conservation Services, Government of BermudaGoogle Scholar
  10. Chopra R, Verma VK, Sharma PK (2001) Mapping, monitoring and conservation of Harike wetland ecosystem, Punjab, India, through remote sensing. Int J Remote Sens 22(1):89–98. doi:10.1080/014311601750038866 CrossRefGoogle Scholar
  11. Chust G, Galparsoro I, Borja Á, Franco J, Uriarte A (2008) Coastal and estuarine habitat mapping, using LIDAR height and intensity and multi-spectral imagery. Estuar Coast Shelf Sci 78(4):633–643. doi:10.1016/j.ecss.2008.02.003 CrossRefGoogle Scholar
  12. Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37:35–46CrossRefGoogle Scholar
  13. Congalton RG, Green K (2009) Assessing the accuracy of remotely sensed data: principles and practices, 2nd edn. Taylor and Francis Group, Boca RatonGoogle Scholar
  14. Crosby A (2003) Theme one: prehistoric settlement, subsistence and social organisation - further investigations at Hickman’s, Nevis. In: Morris E, Leech R, Crosby A, Machling T, Williams B (eds) Nevis heritage project interim report 2001, Southampton: the Nevis heritage project. University of Southampton, Southampton, pp 6–40Google Scholar
  15. De Wulf RR, Goossens RE, MacKinnon JR, Cai WS (1988) Remote sensing for wildlife management: giant panda habitat mapping from LANDSAT MSS images. Geocarto Int 3(1):41–50. doi:10.1080/10106048809354132 CrossRefGoogle Scholar
  16. Fairbridge RW (2004) Classification of coasts. J Coast Res 20(1):155–165CrossRefGoogle Scholar
  17. Fitzpatrick SM, Keegan WF (2007) Human impacts and adaptations in the Caribbean Islands: an historical ecology approach. Earth Environ Scie Trans R Soc Edinb 98(01):29–45. doi:10.1017/s1755691007000096 Google Scholar
  18. Fleiss JL (1981) Statistical methods for rates and proportions, 2nd edn. Wiley, New YorkGoogle Scholar
  19. Gang PO, Agatsiva JL (1992) The current status of mangroves along the Kenyan coast: a case study of Mida Creek mangroves based on remote sensing. Hydrobiologia 247:29–36CrossRefGoogle Scholar
  20. Garono RJ, Simenstad CA, Robinson R, Ripley H (2004) Using high spatial resolution hyperspectral imagery to map intertidal habitat structure in Hood Canal, Washington, U.S.A. Can J Remote Sens 30(1):54–63CrossRefGoogle Scholar
  21. Green EP, Mumby PJ, Edwards AJ, Clark CD, Ellis AC (1998) The assessment of mangrove areas using high resolution multispectral airborne imagery. J Coast Res 14(2):433–443Google Scholar
  22. Gregory D, Johnston R, Pratt G, Watts M, Whatmore S (eds) (2009) The dictionary of human geography, 5th edn. Wiley, West SussexGoogle Scholar
  23. Griggs G (2007a) Beach morphology. In: Denny MW, Gaines SD (eds) Encyclopedia of tidepools and rocky shores. University of California Press, Berkeley, pp 65–67Google Scholar
  24. Griggs G (2007b) Coastal geology. In: Denny MW, Gaines SD (eds) Encyclopedia of tidepools and rocky shores. University of California Press, Berkeley, pp 145–148Google Scholar
  25. Guan W, Chamberlain RH (1999) Mapping submerged aquatic vegetation with GIS in the Caloosahatchee estuary: evaluation of different interpolation methods. Mar Geod 22(2):69–91. doi:10.1080/014904199273506 CrossRefGoogle Scholar
  26. Guichard F, Bourget E, Agnard J-P (2000) High-resolution remote sensing of intertidal ecosystems: a low-cost technique to link scale-dependent patterns and processes. Limnol Oceanogr 45(2):328–338CrossRefGoogle Scholar
  27. Hanak E, Moreno G (2011) California coastal management with a changing climate. Clim Chang 111(1):45–73. doi:10.1007/s10584-011-0295-2 CrossRefGoogle Scholar
  28. Harvey N, Woodroffe CD (2008) Australian approaches to coastal vulnerability assessment. Sustain Sci 3(1):67–87. doi:10.1007/s11625-008-0041-5 CrossRefGoogle Scholar
  29. Heckbert PS, Garland M (1997) Survey of polygonal surface simplification algorithms, Technical Report. Multiresolution Surface Modeling Course (SIGGRAPH). School of Computer Science, Carnegie Mellon University, Pittsburgh, PAGoogle Scholar
  30. Howari FM, Jordan BR, Bouhouche N, Wyllie-Echeverria S (2009) Field and remote-sensing assessment of mangrove forests and seagrass beds in the northwestern part of the United Arab Emirates. J Coast Res 251:48–56. doi:10.2112/07-0867.1 CrossRefGoogle Scholar
  31. Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5(3):299–314Google Scholar
  32. James NP, Schenk PE (1983) Field guide to Pleistocene and modern carbonates of Bermuda. Bermuda Biological Station for Research, Special Publication No. 25, Nova Scotia, CanadaGoogle Scholar
  33. Land LS, Mackenzie FT, Gould SJ (1967) Pleistocene history of Bermuda. Geol Soc Am Bull 78(8):993. doi:10.1130/0016-7606(1967)78[993:phob]2.0.co;2 CrossRefGoogle Scholar
  34. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174CrossRefGoogle Scholar
  35. Larsen PF, Barker S, Wright J, Erickson CB (2004) Use of cost effective remote sensing to map and measure marine intertidal habitats in support of ecosystem modeling efforts: Cobscook Bay, Maine. Northeast Nat 11(Special Issue 2):225–242. doi:10.1656/1092-6194%282004%2911%5b225%3auocers CrossRefGoogle Scholar
  36. Lathrop RG, Montesano P, Haag S (2006) A multi-scale segmentation approach to mapping seagrass habitats using airborne digital camera imagery. Photogramm Eng Remote Sens 72(6):665–675CrossRefGoogle Scholar
  37. Le Hir M, Hily C (2005) Macrofaunal diversity and habitat structure in intertidal boulder fields. Biodivers Conserv 14:233–250CrossRefGoogle Scholar
  38. Lewis SM, Rotjan RD (2009) Vacancy chains provide aggregate benefits to Coenobita clypeatus hermit crabs. Ethology 115(4):356–365. doi:10.1111/j.1439-0310.2009.01626.x CrossRefGoogle Scholar
  39. Madeiros J (2000) West Indian top-shell (Cittarium pica) reintroduction project: return of a long-lost native species to the islands of Bermuda, results of the summer 2000 population survey. Department of Conservation Services Report. Government of BermudaGoogle Scholar
  40. Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253CrossRefGoogle Scholar
  41. McGuinness KA (1984) Species-area relations of communities on intertidal boulders: testing the null hypothesis. J Biogeogr 11(5):439–456CrossRefGoogle Scholar
  42. Mellin C, Russell BD, Connell SD, Brook BW, Fordham DA (2012) Geographic range determinants of two commercially important marine molluscs. Divers Distrib 18(2):133–146. doi:10.1111/j.1472-4642.2011.00822.x CrossRefGoogle Scholar
  43. Murphy RJ, Underwood AJ, Tolhurst TJ, Chapman MG (2008) Field-based remote-sensing for experimental intertidal ecology: case studies using hyperspatial and hyperspectral data for New South Wales (Australia). Remote Sens Environ 112(8):3353–3365. doi:10.1016/j.rse.2007.09.016 CrossRefGoogle Scholar
  44. Nezlin NP, Kamer K, Stein ED (2007) Application of color infrared aerial photography to assess macroalgal distribution in an eutrophic estuary, Upper Newport Bay, California. Estuar Coasts 30(5):855–868CrossRefGoogle Scholar
  45. O’Day SJ, Keegan WF (2001) Expedient shell tools from the Northern West Indies. Lat Am Antiq 12(3):274–290CrossRefGoogle Scholar
  46. Powell RL, Matzke N, de Souza C, Clark M, Numata I, Hess LL, Roberts DA (2004) Sources of error in accuracy assessment of thematic land-cover maps in the Brazilian Amazon. Remote Sens Environ 90(2):221–234. doi:10.1016/j.rse.2003.12.007 CrossRefGoogle Scholar
  47. R Development Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  48. Randall JE, Bishop BP (1967) Food habits of reef fishes of the West Indies. Institute of Marine Biology, University of Puerto Rico, MayaguezGoogle Scholar
  49. Roberts DA, Gardner M, Church R, Ustin S, Scheer G, Green RO (1998) Mapping chaparral in the Santa Monica mountains using multiple endmember spectral mixture models. Remote Sens Environ 65:267–279CrossRefGoogle Scholar
  50. Schneider KR, Helmuth B (2007) Patterns of heat and temperature. In: Denny MW, Gaines SD (eds) Encyclopedia of tidepools and rocky shores. University of California Press, Berkeley, pp 263–266Google Scholar
  51. Short AD, Woodroffe CD (2009) The coast of Australia. Cambridge University Press, CambridgeGoogle Scholar
  52. Smith GF, Bruce DG, Roach EB (2001) Remote acoustic habitat assessment techniques used to characterize the quality and extent of oyster bottom in the Chesapeake Bay. Mar Geod 24(3):171–189. doi:10.1080/01490410152494736 CrossRefGoogle Scholar
  53. Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, Halpern BS, Jorge MA, Lombana AL, Lourie SA, Martin KD, McManus E, Molnar J, Recchia CA, Robertson J (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57(7):573–583CrossRefGoogle Scholar
  54. Stehman SV (1997) Selecting and interpreting measures of thematic classification accuracy. Remote Sens Environ 62:77–89CrossRefGoogle Scholar
  55. Thomas MLH, Logan A (1992) A guide to the ecology of shoreline and shallow-water marine communities of Bermuda. Bermuda Biological Station for Research, Special Publication No. 30Google Scholar
  56. Thomson AG, Fuller RM, Sparks TH, Yates MG, Eastwood JA (1998) Ground and airborne radiometry over intertidal surfaces: waveband selection for cover classification. Int J Remote Sens 19(6):1189–1205. doi:10.1080/014311698215685 CrossRefGoogle Scholar
  57. Thomson AG, Fuller RM, Yates MG, Brown SL, Cox R, Wadsworth RA (2003) The use of airborne remote sensing for extensive mapping of intertidal sediments and saltmarshes in eastern England. Int J Remote Sens 24(13):2717–2737. doi:10.1080/0143116031000066918 CrossRefGoogle Scholar
  58. Tobler WR (1988) Resolution, resampling, and all that. In: Mounsey H, Tomlinson R (eds) Building database for global science. Taylor and Francis, London, pp 129–137Google Scholar
  59. Tyberghein L, Verbruggen H, Pauly K, Troupin C, Mineur F, De Clerck O (2012) Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Glob Ecol Biogeogr 21(2):272–281. doi:10.1111/j.1466-8238.2011.00656.x CrossRefGoogle Scholar
  60. Vacher HL, Hearty P (1989) History of stage 5 sea level in Bermuda: review with new evidence of a brief rise to present sea level during substage 5A. Quat Sci Rev 8:159–168CrossRefGoogle Scholar
  61. Verrill AE (1902a) The Bermuda Islands: an account of their scenery, climate, productions, physiography, natural history and geology, with sketches of their discovery and early history, and the changes in their flora and fauna due to man (subsequent publication). The Author, New HavenGoogle Scholar
  62. Verrill AE (1902b) The Bermuda Islands: their scenery, climate, productions, physiography, natural history, and geology; with sketches of their early history and the changes due to man (original publication). Transactions of the Connecticut Academy of Arts and Sciences 11, Part II:413–956Google Scholar
  63. Wang T, Ye X, Skidmore AK, Toxopeus AG (2010) Characterizing the spatial distribution of giant pandas (Ailuropoda melanoleuca) in fragmented forest landscapes. J Biogeogr 37(5):865–878. doi:10.1111/j.1365-2699.2009.02259.x CrossRefGoogle Scholar
  64. Wingate DB (1995) Returning invertebrates to the wild: West Indian top-shell in Bermuda. Dep Agric Fish Parks Mon Bull 66(1):4–5Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Erin L. Meyer
    • 1
    • 2
  • Nicholas J. Matzke
    • 1
    • 3
  • Simon J. Williams
    • 4
  1. 1.Department of Integrative BiologyUniversity of California BerkeleyBerkeleyUSA
  2. 2.California Ocean Science TrustOaklandUSA
  3. 3.National Institute for Mathematical and Biological SynthesisKnoxvilleUSA
  4. 4.Department of GeographyUniversity of California BerkeleyBerkeleyUSA

Personalised recommendations