Journal of Coastal Conservation

, Volume 17, Issue 3, pp 527–543 | Cite as

Using geospatial business intelligence paradigm to design a multidimensional conceptual model for efficient coastal erosion risk assessment

  • Amaneh Jadidi
  • Mir Abolfazl Mostafavi
  • Yvan Bédard
  • Bernard Long
  • Eve Grenier


One of the main challenges in Coastal Erosion Risk Assessment (CERA) is integrating and analysis of conflicting data in various time periods and spatial scales through dissimilar environmental, social, and economic criteria. Currently, Geographical Information Systems (GIS) are widely used in risk assessment despite their drawbacks and limitations as transactional systems for multi-scales, multi-epochs, and multi-themes analysis. Hence, an analytical conceptual framework is proposed in this paper based on geospatial business intelligence paradigm to develop a Spatial Multidimensional Conceptual Model (SMCM) to assess coastal erosion risk. The model is designed based on Spatial On-Line Analytical Processing (SOLAP) platform, on the top of both analytical and transactional paradigms, to allow fast synthesis of cross-tabulated data and easy comparisons over space, scales, epochs, and themes. This objective is achieved through a comprehensive integration of multiple environmental, social, and economic criteria as well as their interactions at various scales. It also takes into account multiple elements at risk such as people, infrastructure, and built environment as different dimensions of analysis. Using this solution allows decision makers to benefit from on-demand, interactive, and comprehensive information in a way that is not possible using GIS alone. The developed model can easily be adapted for any other coastal region through the proposed framework to perform risk assessment. The advantages and drawbacks of the proposed framework are also discussed and new research perspectives are presented.


Coastal erosion risk assessment SOLAP Decision making GIS Spatial datacube Geospatial business intelligence 



Business Intelligence


Coastal Erosion Risk


Coastal Erosion Risk Assessment


Decision Support System


Digital Terrain Model


Geographical Information System


Hybrid OnLine Analytical Processing


Multidimensional OnLine Analytical Processing


Relational OnLine Analytical Processing


Spatial Decision Support System


Spatial Multidimensional Conceptual Model


Spatial On-Line Analytical Processing


Unified Model Language



The authors would like to thank gratefully the Natural Science and Engineering Research Council of Canada (NSERC) for funding the research, Ms. Sonia Rivest for her technical advice in conceptual model design and Ms. Jessica Polk for her kindness for English revision.


  1. Abelló A, Samos J, Saltor F (2006) YAM2: a multidimensional conceptual model extending UML. Inf Syst 31(6):541–567CrossRefGoogle Scholar
  2. Abuodha PA, Woodroffe CD (2006) International assessments of the vulnerability of the coastal zone to climate change, including an Australian perspective. Australian Greenhouse Office, Department of the Environment and Heritage, 75pGoogle Scholar
  3. Alexander DE (2000) Confronting Catastrophe: New Perspectives on Natural Disasters, Terra Publishing, New York, Oxford University Press, 282pGoogle Scholar
  4. NOAA (National Oceanic & Atmospheric Administration) (2003) Science of tsunami hazards. 21(1)Google Scholar
  5. Bédard Y, Han J (2009) Fundamentals of spatial data warehousing for geographic knowledge discovery. In: Miller HJ, Han J (eds) Geographic data mining and knowledge discovery, Taylor & Francis: 46–66Google Scholar
  6. Bédard Y, Larrivée S, Proulx MJ, Létourneau F, Caron PY (1997) Étude de l’état actuel et des besoins de R&D relativement aux architectures et technologies des data warehouses appliquées aux données spatiales. Research Report for National Defence, Quebec City, Laval UniversityGoogle Scholar
  7. Bédard Y, Rivest S, Proulx MJ (2007) Spatial. Online Analytical. Processing (SOLAP): Concepts, Architectures, and Solutions. In Wrembel R and Koncilia C (eds), Data Warehouses and OLAP: Concepts, Architectures, and Solutions, Idea Group Inc, 298–319Google Scholar
  8. Bimonte S, Boulil K, Chanet JP, Pradel M (2012) Definition and analysis of new agricultural farm energetic indicators using spatial OLAP. Computational Science and Its Applications–ICCSA 2012, 373–385Google Scholar
  9. Blaikie P, Cannon T, Davis I, Wisner B (2004) At risk natural hazards, people’s vulnerability and disaster, 2nd edn. Routledge, New YorkGoogle Scholar
  10. Boruff BJ, Emrich C, Cutter SL (2005) Erosion hazard vulnerability of US Coastal Counties. J Coast Res 21(5):932–942CrossRefGoogle Scholar
  11. Caron P-Y (1998) Étude du potentiel OLAP pour supporter l’analyse spatio-temporelle. MSc thesis, Dept. Geomatics Sciences, Laval University, Quebec City, CanadaGoogle Scholar
  12. Chaudhuri S, Dayal U, Narasayya V (2011) An overview of business intelligence technology. Commun ACM 54(8):88–98CrossRefGoogle Scholar
  13. Cutter SL, Boruff BJ, Shirley WL (2003) Indicators of social vulnerability to environmental hazards. Soc Sci Q 84(1):242–261CrossRefGoogle Scholar
  14. Daudé E, Provitolo D, Dubos-Paillard E,Gaillard D, Eliot E, Langlois P, Propeck-Zimmermamnn E, Saint-Gérand T (2009) Spatial risks and complex systems: methodological perspectives.In: Aziz-Alaoui MA, Bertelle C (eds) From system complexity to emergent properties understanding complex systems, sptinger, ISBN doi  10.1007/978-3-642-02199-2_7
  15. Desprats JF, Garcin M, Attanayake N, Pedreros R, Siriwardana C, Fontaine M, Fernando S, De Silva U (2010) A ‘coastal-hazard GIS’ for Sri Lanka. J Coast Conserv 14(1):21–31CrossRefGoogle Scholar
  16. Dziubinski M, Fratczak M, Markowski AS (2006) Aspects of risk analysis associated with major failures of fuel pipelines. J Loss Prev Process Ind 19:399–408CrossRefGoogle Scholar
  17. Füssel HM (2009) Review and quantitative analysis of indices of climate change exposure, adaptive capacity, sensitivity, and impacts. Background note to the World Development Report 2010, World Bank, Washington DCGoogle Scholar
  18. Füssel HM (2010) How inequitable is the global distribution of responsibility, capability, and vulnerability to climate change: a comprehensive indicator-based assessment. Glob Environ Chang 20(4):597–611CrossRefGoogle Scholar
  19. Genz AS, Fletcher CH, Dunn RA, Frazer LN, Rooney JJ (2007) The predictive accuracy of shoreline change rate methods and alongshore beach variation on Maui, Hawaii. J Coast Res 23(1):87–105CrossRefGoogle Scholar
  20. Gornitz VM, Beaty TW, Daniels RC (1997) A coastal hazards database for the US west coast. Oak Ridge National Laboratory, Oak Ridge, 162pCrossRefGoogle Scholar
  21. Han J, Stefanovic N, Koperski K (1998) Selective materialization: an efficient method for spatial datacube construction. Res Dev Knowl Discov Data Min Lect Notes Comput Sci 1394:144–158CrossRefGoogle Scholar
  22. Hegde AV, Reju VR (2007) Development of coastal vulnerability index for Mangalore coast, India. J Coast Res 23(5):1106–1111CrossRefGoogle Scholar
  23. Hessami AG (2004) A systems framework for safety and security: the holistic paradigm. Syst Eng 7(2):99–112CrossRefGoogle Scholar
  24. Hinkel J (2005) DIVA: an iterative method for building modular integrated models. Adv Geosci 4:45–50CrossRefGoogle Scholar
  25. Hinkel J, Klein RJT (2007) Integrating knowledge for assessing coastal vulnerability to climate change. In: McFadden L, Nicholls RJ, Penning-Rowsell EC (eds) Managing coastal vulnerability: an integrated approach. Elsevier Science, Amsterdam, pp 61–78Google Scholar
  26. Imhoff C, Gallemo N, and Geiger JG (2003) Mastering Data Warehouse Design: Relational and Dimensional Techniques. John Wiley, 456 pages.Google Scholar
  27. IPCC (2007) IPCC Fourth Assessment Report: Climate Change 2007, Working Group I Report: The Physical Science Basis,
  28. Iris J (2009) Contribution de la méthodologie et de la technologie géodécisionnelle pour l’aide à l’évaluation des risques naturels dans le secteur de l’assurance en France. Sciences et Génie des Activités à Risques. Paris, l’Ecole des Mines de Paris. Ph.D: 221Google Scholar
  29. ISO/TC211 (2003) Geographie Information - Spatial Referencing by Geographic Identifiers. Report 19112Google Scholar
  30. Karvetski CW, Lambert JH, Keisler JM, Linkov I (2011) Integration of decision analysis and scenario planning for coastal engineering and climate change. Syst, Man Cybern Part A: Syst Humans, IEEE Trans 41(1):63–73CrossRefGoogle Scholar
  31. Kazakos W, Kramer R, Schmidt A (2000) Coastbase-The Virtual European coastal and marine data warehouse, In: Cremers A, Greve K (eds) Environmental information for planning, politics and the public. 12th International symposium “Computer Science for Environmental Protection”, Bonn 2000, Volume II. Metropolis VerlagGoogle Scholar
  32. Kimball R, Ross M (2002) The data warehouse toolkit: the complete guide to dimensional modeling. Wiley, 464 p.Google Scholar
  33. Klein EJT, Nicholls RJ (1999) Assessment of coastal vulnerability to sea-level rise. Ambio 28:182–187Google Scholar
  34. Larrivée S (2011) Comment choisir les meilleures données géospatiales?
  35. Li X, Zhou Y, Shen F, Kuang R, Wu W, Zheng Z (2012) A decision support framework for the risk assessment of coastal erosion in the Yangtze Delta. Adv Spat Data Handling GIS 213–226Google Scholar
  36. Limber PW, List JH, Warren JW, Farris AS, Weber KM (2007) Using topographic lidar data to delineate the North Carolina shoreline. Proceedings of Coastal Sediments’07, American Society of Civil Engineers, 1–14Google Scholar
  37. Linham MM, Nicholls RJ (2012) Adaptation technologies for coastal erosion and flooding: a review. Proc ICE-Marit Eng 165(3):95–112CrossRefGoogle Scholar
  38. Mai S and Liebermann N (2002) A decision support system for an optimal design of sea dikes with respect to risk. 5th International conference on hydroinformatics, Cardiff, United KingdomGoogle Scholar
  39. Malinowski E, Zimanyi E (2006) Hierarchies in a multidimensional model: from conceptual modeling to logical representation. Data Knowl Eng 59(2):348–377CrossRefGoogle Scholar
  40. Malinowski E, Zimanyi E (2008) Advanced data warehouse design: from conventional to spatial and temporal applications. Springer, 466 pGoogle Scholar
  41. McFadden L, Nicholls RJ, Vafeidis A, Tol RSJ (2007) A methodology for modeling coastal space for global assessment. J Coast Res 23(4):911–920CrossRefGoogle Scholar
  42. McHugh R, Bilodeau F, Rivest S, Bédard Y, Michaud M (2006) Analyse du potentiel d’une application SOLAP pour une gestion efficace de l’érosion des berges en Gaspésie Iles-de-la-Madeleine. Géomatique 2006, MontrealGoogle Scholar
  43. Morang A and Szuwalski A (2003) Coastal engineering manual-glossory. Washington, D.C., U.S. Army Corps of Engineers: 95Google Scholar
  44. Muhlbauer WK (1996) Pipeline risk management manual. Gulf Publishing Company, HoustonGoogle Scholar
  45. Nakalevu T (2006) CV&A: a guide to community vulnerability and adaptation assessment and action. Apia, Samoa: SPREPGoogle Scholar
  46. Pedersen TB, Jensen CS (2001) Multidimensional database technology. IEEE Comput Soc 34(12):40–46CrossRefGoogle Scholar
  47. Rivest S, Bédard Y, Marchand P (2001) Toward better support for spatial decision making: defining the characteristics of Spatial On-Line Analytical Processing (SOLAP). Geomatica 55(4):539–555Google Scholar
  48. Rivest S, Bédard Y, Proulx M-J, Nadeau M, Hubert F, Pastor J (2005) SOLAP: merging business intelligence with geospatial technology for interactive spatio-temporal exploration and analysis of data. J ISPRS: Advs Spatio-Temporal Anal Represent 60(1):17–33Google Scholar
  49. Salehi M, Bédard Y, Rivest S (2010) A formal conceptual model and definition framework for spatial datacubes. Geomatica 64(3):313–326Google Scholar
  50. Santini M, Caccamo G, Laurenti A, Noce S, Valentini R (2010) A multi-component GIS framework for desertification risk assessment by an integrated index. Appl Geogr 30(3):394–415CrossRefGoogle Scholar
  51. Sharples C (2004) Indicative mapping of Tasmanian coastal vulnerability to climate change and sea level rise: explanatory report. Tasmanian Department of Primary Industries, Water and Environment (accessed in december 2012)Google Scholar
  52. SimCoast (2012) Coastal Zone Management Expert System,
  53. Stefanovic N (1997) Design and implementation of On-Line Analytical Processing (OLAP) of spatial data. Computer Sciences Department. Vancouver, Simon Fraser University. M.ScGoogle Scholar
  54. Thieler ER, Hammer-klose ES (1999) National assessment of coastal vulnerability to sea-level rise: preliminary results for the US Atlantic coast. Woods Hole, MA: United States Geological Survey (USGS)Google Scholar
  55. Thieler ER, Himmelstoss EA, Zichichi JL, Ergul A (2009) Digital Shoreline Analysis System (DSAS) version 4.0—An ArcGIS extension for calculating shoreline change: U.S. Geological SurveyGoogle Scholar
  56. Thomasoni AM (2010) Modèles et méthodes d’évaluation et de gestion des risques appliqués aux systèmes de transport de marchandises dangereuses(TMD) reposant sur les nouvelles technologies de l’information et de la communication (NTIC). Science et génie des activités à risques, l’École nationale supérieure des mines de Paris. PhD: 267Google Scholar
  57. Torlone R (2003) Conceptual Multidimensianl Models. In Rafanelli M (eds) Multidimensional datacubes: Problems and Solutions, Idea Group Inc, 69–90Google Scholar
  58. Totsching R, Sedlacek W, Fuchs S (2011) A quantitative vulnerability function for fluvial sediment transport. Nat Hazards 58(2):681–703Google Scholar
  59. UNFCCC (1999) Compendium of Decision tools to evaluate strategies for adaptation to climate change. United Nations framework convention on climate change. Bonn, GermanyGoogle Scholar
  60. Uricchio VF, Giordano R, Lopez N (2004) A fuzzy knowledge-based decision support system for groundwater pollution risk evaluation. J Environ Manag 73:189–197CrossRefGoogle Scholar
  61. Vafeidis A, Nicholls RJ, McFadden L, Hinkel J, Grashoff PS (2004) Developing a global database for coastal vulnerability analysis: design issues and challenges. Int Arch Photogramm Remote Sens Spat Inf Sci 35:801–805Google Scholar
  62. Vafeidis A, Nicholls RJ, McFadden L, Tol RSJ, Hinkel J, Spencer T, Grashoff PS, Boot G, Klein JTR (2008) A new global coastal database for impact and vulnerability analysis to sea level rise. J Coast Res 24(4):917–924CrossRefGoogle Scholar
  63. Van Kouwen F, Dieperink C, Schot P, Wassen M (2008) Applicability of decision support systems for integrated coastal zone management. Coast Manag 36:19–34CrossRefGoogle Scholar
  64. Varnes DJ (1984) Commission on landslides and other mass-movements-IAEG landslide hazard zonation: a review of principles and practices. UNESCO Press, ParisGoogle Scholar
  65. Xhardé R (2007) Application des techniques aéroportées vidéographiques et lidar à l’étude des risques naturels en milieu côtier. PhD thesis, INRS-ETE, Quebec, CanadaGoogle Scholar
  66. Zuzek PJ, Nairn RB, Thieme SJ (2003) Spatial and temporal considerations for in calculating shoreline change rates the Great Lakes basin. J Coast Res Spec Ed 38:125–146Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Amaneh Jadidi
    • 1
  • Mir Abolfazl Mostafavi
    • 1
  • Yvan Bédard
    • 1
  • Bernard Long
    • 2
  • Eve Grenier
    • 1
  1. 1.Centre of Research in GeomaticsLaval UniversityQuebec CityCanada
  2. 2.Centre Eau, Terre et Environnement, INRSQuebec CityCanada

Personalised recommendations