Advertisement

Journal of Coastal Conservation

, Volume 16, Issue 4, pp 503–510 | Cite as

Modelling of coastal vulnerability in the stretch between the beaches of Porto de Mós and Falésia, Algarve (Portugal)

  • V. Nuno Martins
  • Rui Pires
  • Pedro Cabral
Article

Abstract

Coastal systems are characterized by high geophysical and biophysical sensitivity as being their massive occupation a serious issue concerning their self-regulation. Worldwide coastal areas are exposed to problems such as coastal erosion, degradation and destruction of marine habitats, pollution and rising sea level. Thus, it is crucial to design models of coastal vulnerability assessment to ensure a better management of coastal areas. This study characterizes the vulnerability of the coastal stretch between the beaches of Porto de Mós and Falésia in the Algarve, corresponding to 52 km of the south coast of Portugal. The expansion of urban areas was modelled using a Cellular Automata (CA) based approach. Results show that 65% of the coastal stretch has high and very high vulnerability caused by both physical and human factors. Results further indicate that urban growth may interfere with the natural evolution of the coastal geomorphology. The scenario of urban expansion for the year 2015 highlights the need to develop effective urban planning processes to ensure a correct balance between the geophysical resilience of coastal systems and the promotion of the coastal sector as a strategic asset for the regional and national economy.

Keywords

Assessment Coastal Erosion Coastal Systems, Coastal Vulnerability Cellular Automata 

Abbreviations

CA

Cellular Automata

CAOP

Official Administrative Map of Portugal

CLC

Corine Land Cover

GIS

Geographical Information System

IGP

Portuguese Geographical Institute

IGEOE

Army Geographical Institute

LNEG

National Laboratory of Energy and Geology

INE

National Statistics Institute

TM

Thematic Mapper

ETM+

Enhanced Thematic Mapper

Notes

Acknowledgements

The authors would like to thank Nicola Jane Joseph from ISEGI-UNL for her helpful suggestions and proof reading the article.

References

  1. Adger NW (2006) Vulnerability. Glob Environ Chang 3(3):268–281. doi: 10.1016/j.gloenvcha.2006.02.006 Google Scholar
  2. Alveirinho-Dias JM (2005) Evolução da Zona Costeira Portuguesa: Forçamentos Antrópicos e Naturais. Revista Encontros Científicos—Turismo, Gestão, Fiscalidade 1:7–27Google Scholar
  3. Anfuso G, del Pozo JAM (2005) Towards management of coastal erosion problems and human structure impacts using GIS tools: case study in Ragusa Province, Southern Sicily, Italy. Environ Geol 48(4–5):646–659. doi: 10.1007/s00254-005-1322-2 CrossRefGoogle Scholar
  4. Caetano M, Nunes V, Nunes A (2010) CORINE Land Cover 2000 e 2006—evolução das especificações técnicas, Cartografia e Geodesia 2009, LIDEL, pp 53–64Google Scholar
  5. Chen J, Gong P, He C, Luo W, Tamura M, Shi P (2002) Assessment of the urban development plan of beijing by using a CA-based urban growth model. Photogramm Eng Rem Sens 68:1063–1071Google Scholar
  6. Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46CrossRefGoogle Scholar
  7. Congalton R (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37:35–46. doi: 10.1016/0034-4257(91)90048-B CrossRefGoogle Scholar
  8. Dominguez L, Anfuso G, Gracia FJ (2005) Vulnerability assessment of a retreating coast in SW Spain. J Environ Geol 47(8):1137–1044. doi: 10.1007/s00254-005-1235-0 CrossRefGoogle Scholar
  9. EEA (2006) The changing faces of Europe’s coastal areas. E. Report (Ed.), pp 107. European Environment Agency, CopenhagenGoogle Scholar
  10. EUROSION (2004) Living with coastal erosion in Europe: sediment and space for sustainability. Report to Directorate General Environment, European CommissionGoogle Scholar
  11. Fan F, Wang Y, Wang Z (2008) Temporal and spatial change detection (1998–2003) and predicting of land use and land cover in Core corridor of Pearl River Delta (China) by using TM and + ETM images. Environ Monit Assess 137(1–3):127–147. doi: 10.1007/s10661-007-9734-y CrossRefGoogle Scholar
  12. Folke C (2006) Resilience: the emergence of a perspective for social-ecological systems analyses. Glob Environ Chang 16(3):253–267. doi: 10.1016/j.gloenvcha.2006.04.002 CrossRefGoogle Scholar
  13. Garcia G, Pollard J, Rodriguez RD (2000) Origins, management and measurement of stress on the coast of Southern Spain. Coast Manag 28(3):215–234. doi: 10.1080/089207500408638 CrossRefGoogle Scholar
  14. Gaspar J (coord) (2005) Programa Nacional da Política de Ordenamento do Território, Relatório. 2ª Versão, Fevereiro 2005, MAOT, DGOTDU, LisboaGoogle Scholar
  15. Hadley D (2009) Land use and the coastal zone. Land Use Policy 26(Supplement 1):198–203. doi: 10.1016/j.landusepol.2009.09.014 CrossRefGoogle Scholar
  16. Henríquez C, Azócar G, Romero H (2006) Monitoring and modeling the urban growth of two mid-sized Chilean cities. Habitat International 30:945–964CrossRefGoogle Scholar
  17. Hofstee P, Brussel M (1995) Analysis of suitability for urban expansion in Villavicencio, Colombia. Enschede, International Institute for Geo-Information and Earth ObservationGoogle Scholar
  18. Komar P, Holman RA (1986) Coastal processes and development of shoreline erosion. Annu Rev Earth Planet Sci 14(1):237–265. doi: 10.1146/annurev.ea.14.050186.001321 CrossRefGoogle Scholar
  19. MAOTDR (2006) Bases para a Estratégia de Gestão Integrada da Zona Costeira Nacional. Versão para discussão pública, pp 62Google Scholar
  20. Neves M (2006) Os Sistemas Litorais da Estremadura. Classificação e Caracterização Geomorfológica. Centro de Estudos Geográficos, Lisbon, p 118Google Scholar
  21. Pereira AR (1993) Condicionamentos à erosão no litoral português. O exemplo da costa sudoeste (entre Porto Covo e Lagos). L. A. G. F, Rel. 32:57–74Google Scholar
  22. Pereira AR (1996a) Recent evolution of the bay of Lagos after a heavy antropogenic intervention. In: Ferreira AB & Vieira GT (eds) Fifth European Intensive Course on Applied Geomorphology–Mediterranean and Urban Areas. Departamento de Geografia, Universidade de Lisboa, pp 223–228Google Scholar
  23. Pereira AR (2002) Geografia Física e Ambiente. Universidade Aberta, Lisboa, p 162Google Scholar
  24. Pereira AR (2004) O espaço litoral e a sua vulnerabilidade, GeoINova – Revista do Departamento de Geografia e Planeamento Regional, nº. 10, Lisboa, pp 26–43Google Scholar
  25. Pereira AR, Gomes M (1996b) Vulnerability of the beach-cliff system of Praia da Rocha. In: Ferreira AB & Vieira GT (eds) Fifth European Intensive Course on Applied Geomorphology—Mediterranean and Urban Areas, Departamento de Geografia, Universidade de Lisboa, pp 229–233Google Scholar
  26. Pereira AR, Ramos C, Neves M (2006) Dinâmica dos sistemas litorais: uma componente esquecida no ordenamento do território. O exemplo de Porto de Mós (Lagos). Publicações da Associação Portuguesa de Geomorfólogos, Vol. 3, APGeom, pp 237–244Google Scholar
  27. Pinto P (2008) Sistema de apoio à gestão das zonas costeiras. Aplicação de um modelo para simulação do crescimento urbano no trecho Ovar-Mira. Tese de mestrado, Instituto Superior de Estatística e Gestão de Informação, Universidade Nova de Lisboa, LisboaGoogle Scholar
  28. Pontius GR, Malanson J (2005) Comparison of the structure and accuracy of two land change models. Int J Geogr Inf Sci 19(2):243–265. doi: 10.1080/13658810410001713434 CrossRefGoogle Scholar
  29. Pontius R, Cornell J, Hall C (2001) Modeling the spatial pattern of land-use change with GEOMOD2: application and validation for Costa Rica. Agric Ecosyst Environ 1775:1–13, ISSN 0167–8809Google Scholar
  30. Ramos C (2005) “Parte IV—Os Recursos Hídricos”, in Medeiros, Carlos Alberto (dir.), Brum Ferreira, A. (coord.)—Geografia de Portugal, Vol. 1—O Ambiente Físico, Círculo de Leitores, Lisbon, pp 390–399Google Scholar
  31. Santos FD, Forbes K, Moita R (2002) Climate change in Portugal. Scenarios, impacts and adaptation measures—SIAM project. Gradiva, Lisbon, p 456Google Scholar
  32. Tenedório JA, Rocha J, Encarnação S, Ferreira JC (2006) Modelos Geográficos e Sistemas Complexos—Técnicas de Computação aplicadas à previsão de alterações na linha de costa. ESIG 2006, IX Encontro Nacional de Utilizadores de Informação Geográfica, Tagus Park, 15–17 de Novembro de 2006Google Scholar
  33. Turner BL, Kasperson RE, Matson PA, McCarthy JJ, Corell RW, Christensen L, Eckley N, Kasperson JX, Luers A, Martello ML, Polsky C, Pulsipher A, Schiller A (2003) A framework for vulnerability analysis in sustainability science. Proc Natl Acad Sci U S A 100(14):8074–8079. doi: 10.1073/pnas. 1231335100 CrossRefGoogle Scholar
  34. UNEP (2007) UNEP 2006 Annual Report. pp 87. ISBN No: 978-92-807-2801-9Google Scholar
  35. Veloso-Gomes et al (2006) Bases para a Estratégia de Gestão Integrada da Zona Costeira Nacional. Projecto de Relatório do Grupo de Trabalho pp 1–62Google Scholar
  36. Zêzere JL (2005) Dinâmica de vertentes e riscos geomorfológicos, programa. Centro de Estudos Geográficos, Área de Geografia Física e Ambiente, Rel. Nº 41, 37–101Google Scholar
  37. Zêzere JL, Pereira AR, Morgado P (2006) Perigos Naturais e Tecnológicos no Território de Portugal Continental. Apontamentos de Geografia, Série de investigação, nº19, Centro de Estudos Geográficos, LisboaGoogle Scholar
  38. Zhang K (1998) Twentieth Century Storm Activity and Sea Level Rise Along the U.S. East Coast and their Impact on Shoreline Position, Ph.D. Thesis, Univ. of Maryland, College Park, pp 266Google Scholar
  39. Zhang K, Douglas B, Leatherman S (2004) Global warning and coastal erosion. Clim Change 64(1):41–58CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Centro de Estudos Sociais da Universidade dos AçoresPonta DelgadaPortugal
  2. 2.Instituto Superior de Estatística e Gestão de Informação, ISEGIUniversidade Nova de LisboaLisbonPortugal

Personalised recommendations