Advertisement

Journal of Coastal Conservation

, Volume 16, Issue 1, pp 13–24 | Cite as

An integrated GIS for sedimentological and geomorphological analysis of a lagoon environment. Barra de Cananéia inlet region, (Southeastern Brazil)

  • Luis Américo ContiEmail author
  • Carlos Alberto S. Araujo
  • Fernando S. Paolo
  • Roberto L. Barcellos
  • Marcelo Rodrigues
  • Michel M. Mahiques
  • Valdenir V. Furtado
Article

Abstract

The aim of this work is to use GIS integration data to characterize sedimentary processes in a SubTropical lagoon environment. The study area was the Cananéia Inlet estuary in the southeastern section of the Cananéia Lagoon Estuarine System (CLES), state of São Paulo, Brazil (25°03′S/47°53′W). The area is formed by the confluence of two estuarine channels forming a bay-shaped water body locally called “Trapandé Bay”. The region is surrounded by one of the most preserved tracts of Atlantic Rain Forest in Southwestern Brazil and presents well-developed mangroves and marshes. In this study a methodology was developed using integrated a GIS database based on bottom sediment parameters, geomorphological data, remote sensing images, Hidrodynamical Modeling data and geophysical parameters. The sediment grain size parameters and the bottom morphology of the lagoon were also used to develop models of net sediment transport pathways. It was possible to observe that the sediment transport vectors based on the grain size model had a good correlation with the transport model based on the bottom topography features and Hydrodynamic model, especially in areas with stronger energetic conditions, with a minor contribution of finer sediments. This relation is somewhat less evident near shallower banks and depositional features. In these regions the organic matter contents in the sediments was a good complementary tool for inferring the hydrodynamic and depositional conditions (i.e. primary productivity, sedimentation rates, sources, oxi-reduction rates).

Keywords

Lagoon Bottom sediments Sediment transport Organic matter Gis Coastal manegement 

References

  1. Alesheikh AA, Ghorbanali A, Nouri N (2007) Coastline change detection using remote sensing. Int J Environ Sci Tech 4(1):61–66Google Scholar
  2. Allen TR, Tolvanen HT, Ciertel GF, McLeod GM (2007) Spatial characterization of environmental gradients in a coastal lagoon, Chincoteague Bay. Estuaries and Coasts 30:959–977Google Scholar
  3. Barcellos RL, Berbel GBB, Braga ES, Furtado VV (2005) Distribuição e características do fósforo sedimentar no sistema estuarino lagunar de Cananéia- Iguape, Estado de São Paulo. Brasil Geochim Brasil 19(1):22–36Google Scholar
  4. Bartlett DJ (1999) Working on the frontiers of science: applying GIS to the coastal zone, In: Marine and coastal geographical information systems. Wright D.J and Bartlett D.J. Taylor & FrancisGoogle Scholar
  5. Berendsen HJA, Cohen KM, Stouthamer E (2007) The use of GIS in reconstructing the Holocene palaeogeography of the Rhine-Meuse delta, the Netherlands. International Journal of Geographical Information Science 21(5):589–602Google Scholar
  6. Bokuniewicz HJ, Gordon RB, Kastens KA (1977) Form and migration of sand waves in a large estuary, Long Island Sound. Mar Geol 24:185–199CrossRefGoogle Scholar
  7. Caeiro M, Painho P, Goovaerts H, Costa, Sousa S (2003) Spatial sampling design for sediment quality assessment in estuaries. Environ Model Softw 18:853–859CrossRefGoogle Scholar
  8. Cherlet J, Besio G, Blondeaux B, Van-Lancker V, Verfaillie E, Vittoril G (2007) Modeling sand wave characteristics on the Belgian Continental Shelf and in the Calais-Dover Strait. Journ of geophys Research 112(c6):1–13Google Scholar
  9. Cicin-Sain RW, Knecht AV, Harakunarak A (2000) Education and training in integrated coastal management: lessons from the international arena. Ocean and Coastal Management 43(2000):291–330CrossRefGoogle Scholar
  10. Duck RW, Wewetzer SFK (2000) Relationship between current measurements and sonographs of subtidal bedforms in the macrotidal Tay Estuary, Scotland. In: Pye, K., AllenGoogle Scholar
  11. Eastman JR (2006) IDRISI 15: The Andes Edition. Clark University, Worcester MAGoogle Scholar
  12. Ernani MZ, Gabriels D (2006) Detection of land cover changes using Landsat MSS, TM, ETM+ sensors in Yazd-Ardakan basin, Iran. Proceedings of Agro Environ Ghent University, Ghent, BelgiumGoogle Scholar
  13. Finkl CW, Becerra JE, Achatz V, Andrews JL (2008) Geomorphological mapping along the upper southeast florida atlantic continental platform; I: Mapping Units, Symbolization and Geographic Information System Presentation of Interpreted Seafloor Topography. J Coast Res 24(6):1388–1417CrossRefGoogle Scholar
  14. Folk RL, Ward WC (1957) Brazos river bay: study of the significance of grain size parameters. J Sediment Petrol 27:3–27Google Scholar
  15. Gao S, Collins M (1992) Net sediment transport patterns inferred from grain-size trends, based upon definition of “transport vectors”. Sediment Geol 81:47–60CrossRefGoogle Scholar
  16. Granell C, Díaz L, Gould M (2007) Managing Earth observation data with distributed geoprocessing services. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS 2007), Barcelona, SpainGoogle Scholar
  17. Green D (2010) Applying Geospatial Technologies to Weedmat Monitoring and Mapping: The Ythan Estuary, NE Scotland. Coastal Systems and Continental Margins, 2010, 13(2):153–169Google Scholar
  18. Le Roux JP (1994) Net sediment transport patterns inferred from grain-size trends, based upon definition of transport vectors. Sediment Geol 90(1–2):153–156CrossRefGoogle Scholar
  19. Le Roux JP, Rojas EM (2007) Sediment transport patterns determined from grain-size parameters: overview and state of the art, Sedimentary Geology pp. 473–488Google Scholar
  20. Lehfeldt R, Sellerhoff F, Piasecki M (2002) Components of Web Portals in Coastal Engineering. In: Falconer RA, Lin B, Harris EL, Wilson C, Cluckie ID, Han D, Davis JP, Heslop S (eds) Hydroinformatics 2002. Proc. 5th Intl. Conf. Cardiff. IWA Publishing, London, pp 1501–1506Google Scholar
  21. Leslie H (2005) A synthesis of marine conservation planning approaches. Conserv Biol 19(6):1701–1713CrossRefGoogle Scholar
  22. Lobo FJ, Gonsalez R, Dias JMA, Mendes I (2002) Influence of estuarine morphology on bedload sediment transport patterns: an example from the Guadiana estuary (SE Portugal). Publicações da Associação Portuguesa de Geomorfólogos 1:87–98Google Scholar
  23. Longdill P. C., Healy T. R., Black K. P. 2010 An integrated GIS approach for sustainable aquaculture management area site selection. Ocean and Coastal Management 2008; 51:612624Google Scholar
  24. McLaren P, Bowles D (1985) The effects of sediment transport on grainsize distributions. J Sediment Petrol 55(4):457–470Google Scholar
  25. Mishima M, Yamanaka N, Pereira M, Soares FC, Sinque C, Akaboshi S, Jakobsen O (1985) Hidrografia do complexo estuarino-laginar de Cananeia (25″S–48″W). São Paulo. Brasil. I-Salinidade e temueratura (1973a 1986). Boletim do Instituto de Pesca São Paulo 12:109–121Google Scholar
  26. Muller G (1967) Methods in Sedimentary Petrography (Part I) N. York., Hafner Publishing Co, p 283Google Scholar
  27. Mumby PJ, Raines PS, Gray D, Gibson JP (1995) Geographic information systems: a tool for integrated coastal zone management in Belize. Coast Manag 23(2):111–121CrossRefGoogle Scholar
  28. Naude A, de Jong T, van Teeffelen P (1999) Measuring accessibility with GIS tools: a case study of the wild coast of South Africa. Trans GIS 3:381–395CrossRefGoogle Scholar
  29. Nelson TA, Gillanders SN, Harper J, Morris M (2011) Nearshore aquatic habitat monitoring: a seabed imaging and mapping approach. J Coastal Res 27(2):348–355Google Scholar
  30. Nishigima F (1999) Hidrocarbonetos alifáticos e aromáticos nos sedimentos do complexo lagunar de Cananéia-Iguape, São Paulo, Brasil. Dissertação de Mestrado, IOUSP, São Paulo, p 80Google Scholar
  31. Poizot E, Méar Y (2010) Using a GIS to enhance grain size trend analysis. Environ Model Softw 25(4):513–525CrossRefGoogle Scholar
  32. Poizot E, Méar Y, Biscara L (2008) Sediment trend analysis through the variation of granulometric parameters: a review of theories and applications. Earth-Science Reviews 86(1–4):15–4CrossRefGoogle Scholar
  33. Romankevich EA (1984) Geochemistry of organic matter in the ocean. Springer, New York, p 334Google Scholar
  34. Sarretta A, Masiol M, Molinaroli E (2007) Development of algebra algorithms for automated generation of grain-size distribution maps. Earth Surface Processes and Landforms 32:1116–1127CrossRefGoogle Scholar
  35. Schaeffer-Novelli Y, Mesquita L, Cintron-Molero EG (1990) The Cananeia lagoon estuarine system, Sao Paulo, Brazil. Estuaries 13(2):193–203CrossRefGoogle Scholar
  36. Shi T, Ji L (2002) Utilizing GIS technique to construct Yangtze Estuary geologic information system; Port & Waterway Engineering pp. 2002–10Google Scholar
  37. Somes NLG, Bishop WA, Wong THF (1999) Numerical simulation of wetland hydrodynamics. Environ Int 25:773–779CrossRefGoogle Scholar
  38. Suguio K, Barcelos JH, (1978) Quaternary Sedimentary Environments of Comprida Island, State of São Paulo, vol. 9. Bol. IG, IGc/USP, Brazil. 203–211Google Scholar
  39. Tessler MG, Suguio K, Mahiques MM, Furtado VV (1990) Evolução temporal e espacial da desembocadura lagunar de Cananéia. Bol Inst Oceanogr USP 1(38):23–2Google Scholar
  40. Thompson JR, Flower RJ (2009) Environmental science and management of coastal lagoons in the Southern Mediterranean Region: Key issues revealed by the MELMARINA Project. HydrobiologiaGoogle Scholar
  41. Van der Wal D, Pye K (2003) The use of historical bathymetric charts in a GIS to assess morphological change in estuaries. Hydrogr J 110:3–9Google Scholar
  42. Verner BE, Noormets R, Winter C, Hebbeln D, Bartholomä A, Flemming BW, Bartholdy J (2006) Quantification of dune dynamics during a tidal cycle in an inlet channel of the Danish Wadden Sea. Geo-Marine Letters 26(3):151CrossRefGoogle Scholar
  43. Welch R, Remillard M, Alberts J (1992) Integration of GPS, remote sensing, and GIS techniques for coastal resource management. Photogramm Eng Remote Sens 58(11):1571–1578Google Scholar
  44. Wilbers AWE, Brinke WBM (2003) The response of subaqueous dunes to floods in sand and gravel bed reaches of the Dutch Rhine. Sedimentology 50(6):1013–1034CrossRefGoogle Scholar
  45. Wright DJ, Dwyer E, Cummins V (Eds.) (2010) Coastal Informatics: Web Atlas Design and Implementation, Hershey, PA: IGI-Global, doi: 10.4018/978-1-61520-815-9, ISBN13:9781615208159, pp 350

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Luis Américo Conti
    • 1
    Email author
  • Carlos Alberto S. Araujo
    • 2
  • Fernando S. Paolo
    • 3
  • Roberto L. Barcellos
    • 4
  • Marcelo Rodrigues
    • 3
  • Michel M. Mahiques
    • 3
  • Valdenir V. Furtado
    • 3
  1. 1.Escola de Artes Ciências e HumanidadesUniversidade de São PauloSão PauloBrazil
  2. 2.Instituto de Pesquisas Espaciais—INPESão José dos CamposBrazil
  3. 3.Instituto OceanográficoUniversidade de São PauloSão PauloBrazil
  4. 4.Universidade Federal de PernambucoRecifeBrazil

Personalised recommendations