Journal of Coastal Conservation

, Volume 15, Issue 3, pp 337–351

Functional autoregressive forecasting of long-term seabed evolution

  • Serge Guillas
  • Anna Bakare
  • Jeremy Morley
  • Richard Simons


There is a need for decadal predictions of the seabed evolution, for example to inform resurvey strategies when maintaining navigation channels. The understanding of the physical processes involved in morphological evolution, and the viability of process models to accurately model evolution over these time scales, are currently limited. As a result, statistical approaches are used to supply long-term forecasts. In this paper, we introduce a novel statistical approach for this problem: the autoregressive Hilbertian model (ARH). This model naturally assesses the time evolution of spatially-distributed measurements. We apply the technique to a coastal area in the East Anglian coast over the period 1846 to 2002, and compare with two other statistical methods used recently for seabed prediction: the autoregressive model and the EOF model. We evaluate the performance of the three methods by comparing observations and predictions for 2002. The ARH model enables a reduction of 10% of the root mean squared errors. Finally, we compute the variability in the predictions related to time sampling using the jackknife, a method that uses subsamples to quantify uncertainties.


Seabed evolution Forecasting Autoregressive Hilbertian model EOF Jackknife 


  1. Bakare A, Guillas S, Morley J, Simons R (2009) A two-dimensional spatial statistical model for morphodynamic seabed modelling and prediction. In: Proceedings of the 6th international conference coastal dynamics 2009. American Society of Civil Engineers, New YorkGoogle Scholar
  2. Bosq D (2000) Linear processes in function spaces: theory and applications. In: Lecture notes in statistics, vol 149. Springer, New YorkGoogle Scholar
  3. Cooper WS, Townend IH, Balson PS (2008) A synthesis of current knowledge on the genesis of the Great Yarmouth and Norfolk Bank Systems. Marine Estate Research report, The Crown Estate, ISBN: 978-0-9553427-8-3, 69 pGoogle Scholar
  4. Damon J, Guillas S (2002) The inclusion of exogenous variables in functional autoregressive ozone forecasting. Environmetrics 13:759–774CrossRefGoogle Scholar
  5. Davis JC (2000) Statistics and data analysis in geology, 3rd edn. Wiley, New YorkGoogle Scholar
  6. De Vriend HJ (2003) On the prediction of aggregated-scale coastal evolution. J Coast Res 19(4):757–759Google Scholar
  7. De Vriend H, Capobianco M, Chesher T, Swart Hd, Latteux B, Stive M (1993) Approaches to long-term modelling of coastal morphology: a review. Coast Eng 21:225–269CrossRefGoogle Scholar
  8. Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7(1):1–26CrossRefGoogle Scholar
  9. Efron B (1981) Nonparametric estimates of standard error: the jackknife, the bootstrap and other methods. Biometrika 68(3):589–599CrossRefGoogle Scholar
  10. Fernández de Castro B, Guillas S, González Manteiga W (2005) Functional samples and bootstrap for predicting sulfur dioxide levels. Technometrics 47(2):212–222CrossRefGoogle Scholar
  11. Ferraty F, Vieu P (2006) Nonparametric functional data analysis: theory and practice. In: Springer series in statistics. Springer, LondonGoogle Scholar
  12. Guillas S (2001) Rates of convergence of autocorrelation estimates for autoregressive hilbertian processes. Stat Probab Lett 55:281–291CrossRefGoogle Scholar
  13. Horrillo-Caraballo J, Reeve D (2008) Morphodynamic behaviour of a nearshore sandbank system: the great yarmouth sandbanks. UK Mar Geol 254:91–106CrossRefGoogle Scholar
  14. Jackson JE (1991) A user’s guide to principal components. Wiley-Interscience, New YorkCrossRefGoogle Scholar
  15. Kenyon NH, Cooper B (2005) Sandbanks, sand transport and offshore wind farms. DTI commissioned reportGoogle Scholar
  16. Lai MJ, Schumaker L (2007) Spline functions over triangulations. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  17. Larson M, Capobianco M, Hanson H (2000) Relationship between beach profiles and waves at Duck, North Carolina determined by canonical correlation analysis. Mar Geol 163:275–288CrossRefGoogle Scholar
  18. Larson M, Capobianco M, Jansen H, Ryski G, Southgate HN, Stive M, Wijnberg KM, Hulscher S (2003) Analysis and modeling of field data on coastal morphological evolution over yearly and decadal time scales. part 1: background and linear techniques. J Coast Res 19(4):760–775Google Scholar
  19. Miller JK, Dean RG (2007a) Shoreline variabilty via empirical orthogonal function analysis. Part I: temporal and spatial characteristics. Coast Eng 54:111–131CrossRefGoogle Scholar
  20. Miller JK, Dean RG (2007b) Shoreline variabilty via empirical orthogonal function analysis. Part II: relationship to nearshore conditions. Coast Eng 54:133–150CrossRefGoogle Scholar
  21. Nicholson J, Broker I, Roelvink J, Price D, Tanguy J, Moreno L (1997) Intercomparison of coastal area morphodynamic models. Coast Eng 31:97–123CrossRefGoogle Scholar
  22. Reeve D, Li B, Thurston N (2001) Eigenfunction analysis of decadal fluctuations in sandbank morphology at Gt Yarmouth. J Coast Res 17:371–382Google Scholar
  23. Reeve DE, Horrillo-Caraballo JM, Magar V (2008) Statistical analysis and forecasts of long-term sandbank evolution at Great Yarmouth, UK. Estuar Coast Shelf Sci 79(3):387–399. doi:10.1016/j.ecss.2008.04.016 CrossRefGoogle Scholar
  24. Roelvink J (2006) Coastal morphodynamic evolution techniques. Coast Eng 53:277–287CrossRefGoogle Scholar
  25. Southgate HN (2008) Data-based forecasting of beach volumes on monthly to yearly timescales. Coast Eng 55(12):1005–1015. doi:10.1016/j.coastaleng.2008.03.016 CrossRefGoogle Scholar
  26. Southgate HN, Wijnberg KM, Larson M, Capobianco M, Jansen H (2003) Analysis of field data of coastal morphological evolution over yearly and decadal timescales. Part 2: non-linear techniques. J Coast Res 19(4):776–789Google Scholar
  27. Sutherland J, Magar V (2007) A review of modelling approaches to long-term coastal morphodynamics. Coastal WikiGoogle Scholar
  28. Van der Molen J (2002) The influence of tides, wind and waves on the net sand transport in the north sea. Cont Shelf Res 22Google Scholar
  29. Wallingford H (2002) Southern north sea sediment transport study phase 2. Tech. Rep. EX 4526, HR WallingfordGoogle Scholar
  30. Wijnberg KM, Terwindt JH (1995) Extracting decadal morphological behaviour from high-resolution, long-term bathymetric surveys along the holland coast using eigenfunction analysis. Mar Geol 126:30CrossRefGoogle Scholar
  31. Winant CD, Inman DL, Nordstrum CE (1975) Description of seasonal beach changes using empirical eigenfunctions. J Geophys Res 80(15):1979–1987CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Serge Guillas
    • 1
  • Anna Bakare
    • 2
  • Jeremy Morley
    • 2
  • Richard Simons
    • 2
  1. 1.Department of Statistical Science and Aon Benfield UCL Hazard Research CentreUCLLondonUK
  2. 2.Department of Civil, Environmental and Geomatic EngineeringUCLLondonUK

Personalised recommendations