Irish Journal of Medical Science

, Volume 182, Issue 4, pp 615–620

A study of glycogen storage disease with 99Tcm-MIBI gated myocardial perfusion imaging

  • L. G. Wei
  • J. Q. Gao
  • X. M. Liu
  • J. M. Huang
  • X. Z. Li
Original Article

Abstract

Objective

Gated myocardial perfusion imaging (G-MPI) is regularly performed using single-photon emission computed tomography. The objective of this study was to evaluate the clinical value of 99Tcm-methoxyisobutylisonitrile (MIBI) myocardial imaging in glycogen storage disease (GSD).

Methods

99Tcm-MIBI G-MPI was performed in nine patients with clinically proven GSD. QGS quantitative software was used for processing and interpretation. Left ventricular ejection fraction (LVEF), end-diastolic volume (EDV) and end-systolic volume (ESV) were automatically generated. The myocardium was divided into seven segments, 20 sub-segments and a five-point scoring system was used.

Results

Seven out of nine cases were abnormal and the positive rate of G-MPI was 77.8 %. Sixty-two sub-segments of injured myocardium were detected in 140 sub-segments of seven abnormal patients. One injured segment was observed in one patient (14.3 %), two segments were detected in two patients (28.6 %) and three or more abnormal segments were observed in four patients (57.1 %).

Conclusion

99Tcm-MIBI G-MPI can detect myocardial damage in GSD as a non-invasive method. It plays an important role in the clinic.

Keywords

Glycogen storage disease Tomography Emission computed Single-photon MIBI 

References

  1. 1.
    Shin YS (2006) Glycogen storage disease: clinical, biochemical, and molecular heterogeneity. Semin Pediatr Neurol 13(2):115–120PubMedCrossRefGoogle Scholar
  2. 2.
    Hug G (1976) Glycogen storage diseases. Birth Defects Orig Artic Ser 12(6):145–175PubMedGoogle Scholar
  3. 3.
    Fu P, Wei LG, Hu J et al (2012) Assessment of cardiac abnormalities in Duchenne’s muscular dystrophy by 99mTc-MIBI gated myocardial perfusion imaging. Hell J Nucl Med 15(2):114–119PubMedGoogle Scholar
  4. 4.
    Silva C, Moon JC, Elkington AG et al (2007) Myocardial late gadolinium enhancement in specific cardiomyopathies by cardiovascular magnetic resonance: a preliminary experience. J Cardiovasc Med (Hagerstown) 8(12):1076–1079CrossRefGoogle Scholar
  5. 5.
    Vertilus SM, Austin SL, Foster KS et al (2010) Echocardiographic manifestations of glycogen storage disease III: increase in wall thickness and left ventricular mass over time. Genet Med 12(7):413–423PubMedCrossRefGoogle Scholar
  6. 6.
    Sun Y, Ma P, Bax JJ et al (2003) 99mTc-MIBI myocardial perfusion imaging in myocarditis. Nucl Med Commun 24(7):779–783PubMedGoogle Scholar
  7. 7.
    Ozen H (2007) Glycogen storage diseases: new perspectives. World J Gastroenterol 13(18):2541–2553PubMedGoogle Scholar
  8. 8.
    Cabello A, Benlloch T, Franch O et al (1981) Glycogen storage disease in skeletal muscle. morphological, ultrastructural and biochemical aspects in 10 cases. Acta Neuropathol Suppl 7:297–300PubMedCrossRefGoogle Scholar
  9. 9.
    Wan L, Lee CC, Hsu CM et al (2008) Identification of eight novel mutations of the acid alpha-glucosidase gene causing the infantile or juvenile form of glycogen storage disease type II. J Neurol 255(6):831–838PubMedCrossRefGoogle Scholar
  10. 10.
    Lewandowska E, Wierzba-Bobrowicz T, Rola R et al (2008) Pathology of skeletal muscle cells in adult-onset glycogenosis type II (Pompe disease): ultrastructural study. Folia Neuropathol 46(2):123–133PubMedGoogle Scholar
  11. 11.
    Gaze DC, Lawson GJ, Harris A et al (2007) Evidence of cardiomyocyte necrosis in glycogen storage disease type II. Ann Clin Biochem 44(1):86–88PubMedCrossRefGoogle Scholar
  12. 12.
    Kishnani PS, Steiner RD, Bali D et al (2006) Pompe disease diagnosis and management guideline. Genet Med 8(5):267–288PubMedCrossRefGoogle Scholar
  13. 13.
    Bali DS, Tolun AA, Goldstein JL et al (2011) Molecular analysis and protein processing in late-onset Pompe disease patients with low levels of acidα-glucosidase activity. Muscle Nerve 43(5):665–670PubMedCrossRefGoogle Scholar
  14. 14.
    Laforêt P, Richard P, Said MA et al (2006) A new mutation in PRKAG2 gene causing hypertrophic cardiomyopathy with conduction system disease and muscular glycogenosis. Neuromuscul Disord 16(3):178–182PubMedCrossRefGoogle Scholar
  15. 15.
    Arad M, Maron BJ, Gorham JM et al (2005) Glycogen storage diseases presenting as hypertrophic cardiomyopathy. N Engl J Med 352(4):362–372PubMedCrossRefGoogle Scholar
  16. 16.
    Sharma MC, Schultze C, von Moers A et al (2005) Delayed or late-onset type II glycogenosis with globular inclusions. Acta Neuropathol 110(2):151–157PubMedCrossRefGoogle Scholar
  17. 17.
    Yanovitch TL, Banugaria SG, Proia AD et al (2010) Clinical and histologic ocular findings in pompe disease. J Pediatr Ophthalmol Strabismus 47(1):34–40PubMedCrossRefGoogle Scholar
  18. 18.
    Hesselink RP, Schaart G, Wagenmakers AJ et al (2006) Age-related morphological changes in skeletal muscle cells of acid alpha-glucosidase knockout mice. Muscle Nerve 33(4):505–513PubMedCrossRefGoogle Scholar
  19. 19.
    Kishnani PS, Austin SL, Am P et al (2010) Glycogen storage disease type III diagnosis and management guidelines. Genet Med 12(7):446–463PubMedCrossRefGoogle Scholar
  20. 20.
    Hobson-Webb LD, Austin SL, Bali DS et al (2010) The electrodiagnostic characteristics of glycogen storage disease type III. Genet Med 12(7):440–445PubMedCrossRefGoogle Scholar
  21. 21.
    Carvalho JS, Matthews EE, Leonard JV et al (1993) Cardiomyopathy of glycogen storage disease type III. Heart Vessel 8(3):155–159CrossRefGoogle Scholar
  22. 22.
    Hesselink RP, Wagenmakers AJ, Drost MR et al (2003) Lysosomal dysfunction in muscle with special reference to glycogen storage disease type II. Biochim Biophys Acta 1637(2):164–170PubMedCrossRefGoogle Scholar
  23. 23.
    Shi H, Cotton J, Starsiak MD et al (2006) Apical hypertrophy caused by glycogen storage disease creating artifacts in myocardial perfusion imaging. Clin Nucl Med 31(4):229–231PubMedCrossRefGoogle Scholar

Copyright information

© Royal Academy of Medicine in Ireland 2013

Authors and Affiliations

  • L. G. Wei
    • 1
  • J. Q. Gao
    • 1
  • X. M. Liu
    • 1
  • J. M. Huang
    • 1
  • X. Z. Li
    • 1
  1. 1.Department of Nuclear MedicineThe Third Affiliated Hospital of Hebei Medical UniversityShijiazhuangChina

Personalised recommendations