Advertisement

Irish Journal of Medical Science

, Volume 179, Issue 1, pp 9–15 | Cite as

Anaplastic thyroid cancer, tumorigenesis and therapy

  • J. P. O’NeillEmail author
  • D. Power
  • C. Condron
  • D. Bouchier-Hayes
  • M. Walsh
Review Article

Abstract

Background

Anaplastic thyroid cancer (ATC) is a fatal endocrine malignancy. Current therapy fails to significantly improve survival. Recent insights into thyroid tumorigenesis, post-malignant dedifferentiation and mode of metastatic activity offer new therapeutic strategies.

Methods

An extensive literature search of Medline and Pubmed was conducted to include all published reports on ATC. Secondary articles were identified from key paper reference listings.

Conclusions

Significant progress, in the last 5 years, has been made outlining thyroid tumorigenesis and the progression to anaplasia. Continued identification and development of drug therapies is required to counter specific molecular targets responsible for the post-malignant dedifferentiation process and ultimately the fatal neoplastic phenotype.

Keywords

Anaplastic thyroid cancer Undifferentiation Post-malignant dedifferentiation Oncogene Radiotherapy Surgery Chemotherapy 

Notes

Acknowledgments

There was no financial incentive or input into this article.

Conflict of interest statement

There are no conflicts of interest.

References

  1. 1.
    Are C, Shaha AR (2006) Anaplastic thyroid carcinoma: biology, pathogenesis, prognostic factors, and treatment approaches. Ann Surg Oncol 13:453–464. doi: 10.1245/ASO.2006.05.042 CrossRefPubMedGoogle Scholar
  2. 2.
    Ain KB (1998) Anaplastic thyroid carcinoma: behavior, biology, and therapeutic approaches. Thyroid 8:715–726. doi: 10.1089/thy.1998.8.715 CrossRefPubMedGoogle Scholar
  3. 3.
    Albores-Saavedra J, Henson DE, Glazer E et al (2007) Changing patterns in the incidence and survival of thyroid cancer with follicular phenotype-papillary, follicular, and anaplastic: a morphological and epidemiological study. Endocr Pathol 18:1–7. doi: 10.1007/s12022-007-0002-z CrossRefPubMedGoogle Scholar
  4. 4.
    Kobayashi TK, Asakawa H, Umeshita K et al (1996) Treatment of 37 patients with anaplastic carcinoma of the thyroid. Head Neck 18:36–41. doi: 10.1002/(SICI)1097-0347(199601/02)18:1<36::AID-HED5>3.0.CO;2-# CrossRefPubMedGoogle Scholar
  5. 5.
    Kim TY, Kim KW, Jung TS et al (2007) Prognostic factors for Korean patients with anaplastic thyroid carcinoma. Head Neck 29:765–772. doi: 10.1002/hed.20578 CrossRefPubMedGoogle Scholar
  6. 6.
    Sugitani I, Kasai N, Fujimoto Y et al (2001) Prognostic factors and therapeutic strategy for anaplastic carcinoma of the thyroid. World J Surg 25:617–622. doi: 10.1007/s002680020166 CrossRefPubMedGoogle Scholar
  7. 7.
    Delellis RA (2006) Pathology and genetics of thyroid carcinoma. J Surg Oncol 94:662–669. doi: 10.1002/jso.20700 CrossRefPubMedGoogle Scholar
  8. 8.
    Saltman B, Singh B, Hedvat CV et al (2006) Patterns of expression of cell cycle/apoptosis genes along the spectrum of thyroid carcinoma progression. Surgery 140:899–905. doi: 10.1016/j.surg.2006.07.027 CrossRefPubMedGoogle Scholar
  9. 9.
    Wiseman SM, Loree TR, Rigual NR et al (2003) Anaplastic transformation of thyroid cancer: review of clinical, pathologic, and molecular evidence provides new insights into disease biology and future therapy. Head Neck 25:662–670. doi: 10.1002/hed.10277 CrossRefPubMedGoogle Scholar
  10. 10.
    Wiseman SM, Masoudi H, Niblock P et al (2007) Anaplastic thyroid carcinoma: expression profile of targets for therapy offers new insights for disease treatment. Ann Surg Oncol 14:719–729. doi: 10.1245/s10434-006-9178-6 CrossRefPubMedGoogle Scholar
  11. 11.
    Wiseman SM, Griffith OL, Deen S et al (2007) Identification of molecular markers altered during transformation of differentiated into anaplastic thyroid carcinoma. Arch Surg 142:727–729Google Scholar
  12. 12.
    Nikiforova MN, Kimura ET, Gandhi M et al (2003) BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab 88:5399–5404. doi: 10.1210/jc.2003-030838 CrossRefPubMedGoogle Scholar
  13. 13.
    Lemoine NR, Mayall ES, Wyllie FS et al (1989) High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis. Oncogene 4:159–164PubMedGoogle Scholar
  14. 14.
    Quiros RM, Ding HG, Gattuso P et al (2005) Evidence that one subset of anaplastic thyroid carcinomas are derived from papillary carcinomas due to BRAF and p53 mutations. Cancer 103:2261–2268. doi: 10.1002/cncr.21073 CrossRefPubMedGoogle Scholar
  15. 15.
    Segev DL, Umbricht C, Zeiger MA (2003) Molecular pathogenesis of thyroid cancer. Surg Oncol 12:69–90. doi: 10.1016/S0960-7404(03)00037-9 CrossRefPubMedGoogle Scholar
  16. 16.
    Lam KY, Lo CY, Chan KW et al (2000) Insular and anaplastic carcinoma of the thyroid. A 45 year comparative study at a single institution and review of the significance of p53 and p21. Ann Surg 231:329–338. doi: 10.1097/00000658-200003000-00005 CrossRefPubMedGoogle Scholar
  17. 17.
    Moretti F, Nanni S, Farsetti A et al (2000) Effects of exogenous p53 transduction in thyroid tumor cells with different p53 status. J Clin Endocrinol Metab 85:302–308. doi: 10.1210/jc.85.1.302 CrossRefPubMedGoogle Scholar
  18. 18.
    LaPerle KM, Jhiang SM, Capen CC (2000) Loss of p53 promotes anaplasia and local invasion in ret/PTC1-induced thyroid carcinomas. Am J Pathol 157:671–677Google Scholar
  19. 19.
    Nakashima M, Takamura N, Namba H et al (2007) RET oncogene amplification in thyroid cancer: correlations with radiation-associated and high grade malignancy. Hum Pathol 38:621–628. doi: 10.1016/j.humpath.2006.10.013 CrossRefPubMedGoogle Scholar
  20. 20.
    Santoro M, Papotti M, Chiappetta G et al (2002) RET activation and clinicopathologic features in poorly differentiated thyroid tumors. J Clin Endocrinol Metab 87:370–379. doi: 10.1210/jc.87.1.370 CrossRefPubMedGoogle Scholar
  21. 21.
    Shannon KB, Salmon ED (2002) Chromosome dynamics: new light on Aurora B kinase function. Curr Biol 12:458–460. doi: 10.1016/S0960-9822(02)00945-4 CrossRefGoogle Scholar
  22. 22.
    Ulisse S, Delcros JG, Baldini E et al (2006) Expression of Aurora kinases in human thyroid carcinoma cell lines and tissues. Int J Cancer 119:275–282. doi: 10.1002/ijc.21842 CrossRefPubMedGoogle Scholar
  23. 23.
    Sorrentino R, Libertini S, Pallante PL et al (2005) Aurora B overexpression associates with the thyroid carcinoma undifferentiated phenotype and is required for thyroid carcinoma cell proliferation. J Clin Endocrinol Metab 90:928–935. doi: 10.1210/jc.2004-1518 CrossRefPubMedGoogle Scholar
  24. 24.
    Lim SC, Lee MS (2002) Significance of E-cadherin/beta-catenin complex and cyclin D1 in breast cancer. Oncol Rep 9:915–928PubMedGoogle Scholar
  25. 25.
    Barton MC, Akli S, Keyomarsi K (2006) Deregulation of cyclin E meets dysfunction in p53: closing the escape hatch on breast cancer. J Cell Physiol 209:686–694. doi: 10.1002/jcp.20818 CrossRefPubMedGoogle Scholar
  26. 26.
    Musgrove EA (2006) Cyclins: roles in mitogenic signaling and oncogenic transformation. Growth Factors 24:13–19. doi: 10.1080/08977190500361812 CrossRefPubMedGoogle Scholar
  27. 27.
    Fagin JA, Matsuo K, Karmakar A et al (1993) High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J Clin Invest 91:179–184. doi: 10.1172/JCI116168 CrossRefPubMedGoogle Scholar
  28. 28.
    Garcia-Rostan G, Tallini G, Herrero A et al (1999) Frequent mutation and nuclear localization of beta-catenin in anaplastic thyroid carcinoma. Cancer Res 59:1811–1815PubMedGoogle Scholar
  29. 29.
    Wiseman SM, Masoudi H, Niblock P et al (2006) Derangement of the E-cadherin/catenin complex is involved in transformation of differentiated to anaplastic thyroid carcinoma. Am J Surg 191:581–587. doi: 10.1016/j.amjsurg.2006.02.005 CrossRefPubMedGoogle Scholar
  30. 30.
    Rocha AS, Soares P, Fonseca E, Cameselle-Teijeiro J et al (2003) E-cadherin loss rather than beta-catenin alterations is a common feature of poorly differentiated thyroid carcinomas. Histopathology 42:580–587. doi: 10.1046/j.1365-2559.2003.01642.x CrossRefPubMedGoogle Scholar
  31. 31.
    Garcia-Rostan G, Camp RL, Herrero A et al (2001) Beta-catenin dysregulation in thyroid neoplasms: down-regulation, aberrant nuclear expression, and CTNNB1 exon 3 mutations are markers for aggressive tumor phenotypes and poor prognosis. Am J Pathol 158:987–996PubMedGoogle Scholar
  32. 32.
    Hou P, Liu D, Shan Y et al (2007) Genetic alterations and their relationship in the phosphatidylinositol 3-kinase/Akt pathway in thyroid cancer. Clin Cancer Res 13:1161–1170. doi: 10.1158/1078-0432.CCR-06-1125 CrossRefPubMedGoogle Scholar
  33. 33.
    Garcia-Rostan G, Costa AM, Pereira-Castro I et al (2005) Mutation of the PIK3CA gene in anaplastic thyroid cancer. Cancer Res 65:10199–10207. doi: 10.1158/0008-5472.CAN-04-4259 CrossRefPubMedGoogle Scholar
  34. 34.
    Ensinger C, Spizzo G, Moser P et al (2004) Epidermal growth factor receptor as a novel therapeutic target in anaplastic thyroid carcinomas. Ann NY Acad Sci 1030:69–77. doi: 10.1196/annals.1329.009 CrossRefPubMedGoogle Scholar
  35. 35.
    Viglietto G, Maglione D, Rambaldi M et al (1995) Upregulation of vascular endothelial growth factor (VEGF) and downregulation of placenta growth factor (PIGF) associated with malignancy in human thyroid tumors and cell lines. Oncogene 11:1569–1579PubMedGoogle Scholar
  36. 36.
    Prichard CN, Kim S, Yazici YD et al (2007) Concurrent cetuximab and bevacizumab therapy in a murine orthotopic model of anaplastic thyroid carcinoma. Laryngoscope 117:674–679. doi: 10.1097/MLG.0b013e318031055e CrossRefPubMedGoogle Scholar
  37. 37.
    Kim S, Prichard CN, Younes MN et al (2006) Cetuximab and irinotecan interact synergistically to inhibit the growth of orthotopic anaplastic thyroid carcinoma xenografts in nude mice. Clin Cancer Res 12:600–607. doi: 10.1158/1078-0432.CCR-05-1325 CrossRefPubMedGoogle Scholar
  38. 38.
    Kim S, Schiff BA, Yigitbasi OG et al (2005) Targeted molecular therapy of anaplastic thyroid carcinoma with AEE788. Mol Cancer Ther 4:632–640. doi: 10.1158/1535-7163.MCT-04-0293 CrossRefPubMedGoogle Scholar
  39. 39.
    Hoffman S, Burchert A, Wunderlich A et al (2007) Differential effects of cetuximab and AEE 788 on epidermal growth factor receptor (EGF-R) and vascular endothelial growth factor receptor (VEGF-R) in thyroid cancer cell lines. Endocrine 31:105–113. doi: 10.1007/s12020-007-0008-9 CrossRefGoogle Scholar
  40. 40.
    Yohoi K, Thaker PH, Yazici S et al (2005) Dual inhibition of epidermal growth factor receptor and vascular endothelial growth factor receptor phosphorylation by AEE788 reduces growth and metastasis of human colon carcinoma in an orthotopic nude mouse model. Cancer Res 65:3716–3725. doi: 10.1158/0008-5472.CAN-04-3700 CrossRefGoogle Scholar
  41. 41.
    Kim S, Yazici YD, Calzada G et al (2007) Sorafenib inhibits the angiogenesis and growth of orthotopic anaplastic thyroid carcinoma xenografts in nude mice. Mol Cancer Ther 6:1785–1792. doi: 10.1158/1535-7163.MCT-06-0595 CrossRefPubMedGoogle Scholar
  42. 42.
    Smit JW, Schroder-van der Elst JP, Karperien M et al (2007) Iodide kinetics and experimental (131)I therapy in a xenotransplanted human sodium-iodide symporter-transfected human follicular thyroid carcinoma cell line. J Clin Endocrinol Metab 87:1247–1253. doi: 10.1210/jc.87.3.1247 CrossRefGoogle Scholar
  43. 43.
    Hsieh YJ, Ke CC, Liu RS et al (2007) Radioiodide imaging and treatment of ARO cancer xenograft in a mouse model after expression of human sodium iodide symporter. Anticancer Res 27:2515–2522PubMedGoogle Scholar
  44. 44.
    Lee YJ, Chung JK, Shin JH et al (2004) In vitro and in vivo properties of a human anaplastic thyroid carcinoma cell line transfected with the sodium iodide symporter gene. Thyroid 14:889–895. doi: 10.1089/thy.2004.14.889 CrossRefPubMedGoogle Scholar
  45. 45.
    Jeong H, Kim YR, Kim KN et al (2006) Effect of all-trans retinoic acid on sodium/iodide symporter expression, radioiodine uptake and gene expression profiles in a human anaplastic thyroid carcinoma cell line. Nucl Med Biol 33:875–882. doi: 10.1016/j.nucmedbio.2006.07.004 CrossRefPubMedGoogle Scholar
  46. 46.
    Presta I, Arturi F, Ferretti E et al (2005) Recovery of NIS expression in thyroid cancer cells by overexpression of Pax8 gene. BMC Cancer 5:80. doi: 10.1186/1471-2407-5-80 CrossRefPubMedGoogle Scholar
  47. 47.
    Sugawara I, Masunaga A, Itoyama S et al (1995) Expression of multidrug resistance-associated protein (MRP) in thyroid cancers. Cancer Lett 95:135–138. doi: 10.1016/0304-3835(95)03878-z CrossRefPubMedGoogle Scholar
  48. 48.
    Yasuhisa K, Shin-ya M, Michinori M et al (2007) Mechanism of multidrug recognition by MDR1/ABCB1. Cancer Sci 98:1303–1310. doi: 10.1111/j.1349-7006.2007.00538.x CrossRefGoogle Scholar
  49. 49.
    Touhey S, O’Connor R, Plunkett S et al (2002) Structure-activity relationship of indomethacin analogues for MRP-1, COX-1 and COX-2 inhibition: identification of novel chemotherapeutic drug resistance modulators. Eur J Cancer 38:1661–1670. doi: 10.1016/S0959-8049(02)00128-4 CrossRefPubMedGoogle Scholar
  50. 50.
    Brignardello E, Gallo M, Baldi I et al (2007) Anaplastic thyroid carcinoma: clinical outcome of 30 consecutive patients referred to a single institution in the past 5 years. Eur J Endocrinol 156:425–430. doi: 10.1530/EJE-06-0677 CrossRefPubMedGoogle Scholar
  51. 51.
    Kebebew E, Greenspan FS, Clark OH et al (2005) Anaplastic thyroid carcinoma. Treatment outcome and prognostic factors. Cancer 103:1330–1335. doi: 10.1002/cncr.20936 CrossRefPubMedGoogle Scholar
  52. 52.
    Pierie JP, Muzikansky A, Gaz RD et al (2002) The effect of surgery and radiotherapy on outcome of anaplastic thyroid carcinoma. Ann Surg Oncol 9:57–64. doi: 10.1245/aso.2002.9.1.57 CrossRefPubMedGoogle Scholar
  53. 53.
    Lang BH, Lo CY (2007) Surgical options in undifferentiated thyroid carcinoma. World J Surg 31:969–977. doi: 10.1007/s00268-007-0776-7 CrossRefPubMedGoogle Scholar
  54. 54.
    Voigt W, Kegel T, Weiss M et al (2005) Potential activity of paclitaxel, vinorelbine and gemcitabine in anaplastic thyroid carcinoma. J Cancer Res Clin Oncol 131:585–590. doi: 10.1007/s00432-005-0673-0 CrossRefPubMedGoogle Scholar

Copyright information

© Royal Academy of Medicine in Ireland 2009

Authors and Affiliations

  • J. P. O’Neill
    • 1
    Email author
  • D. Power
    • 2
  • C. Condron
    • 3
  • D. Bouchier-Hayes
    • 3
  • M. Walsh
    • 1
  1. 1.The Department of OtolaryngologyThe Royal College of Surgeons in Ireland, Beaumont HospitalDublin 9Ireland
  2. 2.Department of OncologyMemorial Sloan Kettering Cancer CenterNew YorkUSA
  3. 3.The Department of SurgeryThe Royal College of Surgeons in Ireland, Beaumont HospitalDublinIreland

Personalised recommendations