Irish Journal of Medical Science

, Volume 177, Issue 3, pp 233–241 | Cite as

Pregnancy and perinatal outcomes after assisted reproduction: a comparative study

  • C. Allen
  • S. Bowdin
  • R. F. Harrison
  • A. G. Sutcliffe
  • L. Brueton
  • G. Kirby
  • J. Kirkman-Brown
  • C. Barrett
  • W. Reardon
  • E. Maher
Original Article



Increasing use of fertility therapy has elicited concerns regarding adverse effects for expectant mothers and the health of children thus conceived.


To study the risk of adverse perinatal outcomes, birth defects and pregnancy complications following assisted reproductive technology (ART).


Questionnaire-based study involving 1,524 children and 1,182 pregnancies conceived following in vitro fertilisation (IVF) in two units. Outcomes were compared with the general population.


In the study group versus the general population; multi-foetal gestations, 26 versus 2%; singleton preterm delivery and low birth weight, 8.7 and 6.4 versus 4.3 and 4%, respectively; non-lethal congenital malformation rate, 2.6 versus 2.1%; placenta praevia, 2.8 versus 0.5%.


Multi-foetal gestations remain the principal cause of adverse perinatal outcomes after ART. Singleton ART pregnancies have an increased risk of preterm delivery and low birth weight at term. Non-lethal congenital malformation rates are not increased following ART. Placenta praevia is increased following ART.


Assisted reproduction Children IVF Outcomes Perinatal Pregnancy 


  1. 1.
    Andersen AN, Gianaroli L, Felberbaum R, de Mouzon J, Nygren KG, The European IVF-monitoring programme (EIM), European Society of Human Reproduction, Embryology (ESHRE) (2005) Assisted reproductive technology in Europe, 2001. Results generated from European registers by ESHRE. Hum Reprod 20(5):1158–1176PubMedCrossRefGoogle Scholar
  2. 2.
    Schieve LA, Meikle SF, Ferre C, Peterson H, Jeng G, Wilcox L (2002) Low and very low birth weight in infants conceived with the use of assisted reproductive technology. N Engl J Med 346:731–737PubMedCrossRefGoogle Scholar
  3. 3.
    Hansen M, Kurinczuk JJ, Bower C, Webb S (2002) The risk of major birth defects after intracytoplasmic sperm injection and in vitro fertilization. N Engl J Med 346:725–730PubMedCrossRefGoogle Scholar
  4. 4.
    Ludwig AK, Sutcliffe AG, Diedrich K, Ludwig M (2006) Post-neonatal health and development of children born after assisted reproduction: a systematic review of controlled studies. Eur J Obstet Gynecol Reprod Biol 127:3–25PubMedCrossRefGoogle Scholar
  5. 5.
    Doyle P, Beral V, Maconochie N (1992) Preterm delivery, low birthweight and small-for-gestational age in liveborn babies resulting from in-vitro fertilization. Hum Reprod 7:525–528Google Scholar
  6. 6.
    Ombelet W, Martens G, De Sutter P et al (2006) Perinatal outcome of 12,021 singleton and 3,108 twin births after non-IVF-assisted reproduction: a cohort study. Hum Reprod 21(4):1025–1032PubMedCrossRefGoogle Scholar
  7. 7.
    Kapiteijn K, de Bruijn CS, de Boer E et al (2006) Does subfertility explain the risk of poor perinatal outcome after IVF and ovarian hyperstimulation? Hum Reprod 21(12):3228–3234PubMedCrossRefGoogle Scholar
  8. 8.
    Olivennes F, Fanchin R, Ledee N, Righini C, kadoch IJ, Frydamn R (2002) Perinatal outcome and developmental studies on children born after IVF. Hum Reprod Update 8:117–128PubMedCrossRefGoogle Scholar
  9. 9.
    Hansen M, Bower C, Milne E, de Klerk N, Kurinczuk J (2005) Assisted reproductive technologies and the risk of birth defects—a systematic review. Hum Reprod 20(2):328–338PubMedCrossRefGoogle Scholar
  10. 10.
    FIVNAT (1995) Pregnancies and births resulting from in vitro fertilization: French national registry, analysis of data 1986–1990. Fertil Steril 64(4):746–756Google Scholar
  11. 11.
    Ericson A, Kallen B (2001) Congenital malformations in infants born after IVF: a population-based study. Hum Reprod 16:504–509PubMedCrossRefGoogle Scholar
  12. 12.
    Anthony S, Buitindijk SE, Dorrepaal CA et al (2002) Congenital malformations in 4,224 children conceived after IVF. Hum Reprod 17:2089–2095PubMedCrossRefGoogle Scholar
  13. 13.
    Bonduelle M, Camus M, DeVos A et al (1999) Seven years of intracytoplasmic sperm injection and follow-up of 1987 subsequent children. Hum Reprod 14(Suppl 1):243–264PubMedGoogle Scholar
  14. 14.
    Park S, Mathur R, Smith GC (2006) Congenital anomalies after treatment for infertility. BMJ 333:665–666PubMedCrossRefGoogle Scholar
  15. 15.
    Zhu J, Basso O, Obel C, Bille C, Olsen J (2006) Infertility, infertility treatment, and congenital malformations: Danish national birth cohort. BMJ 333(7570):679PubMedCrossRefGoogle Scholar
  16. 16.
    Hawkins MM, Barrett CL, Sutcliffe AG, Cooke ID (1999) Male infertility and increased risks of diseases in future generations. Lancet 354(9193):1906–1907PubMedCrossRefGoogle Scholar
  17. 17.
    Givens CR (2000) Intracytoplasmic sperm injection: what are the risks? Obstet Gynecol Surv 55(1):58–62PubMedCrossRefGoogle Scholar
  18. 18.
    Tournaye H (2005) Sperm and assisted reproduction. Minerva Urol Nefrol 57(2):91–97PubMedGoogle Scholar
  19. 19.
    Shevell T, Malone FD, Vidaver J et al (2005) Assisted reproductive technology and pregnancy outcome. Obstet Gynecol 106(5):1039–1045PubMedGoogle Scholar
  20. 20.
    Kallen B, Finnstrom O, Nygren KG, Otterblad Olausson P, Wennerholm UB (2005) In vitro fertilization in Sweden: obstetric characteristics, maternal morbidity and mortality. BJOG 112(11):1529–1535PubMedCrossRefGoogle Scholar
  21. 21.
    Oschenkuhn R, Strowitzki T, Gurtner M, Strauss A, Schulze A, Hepp H (2003) Pregnancy complications, obstetric risks and neonatal outcome in singleton and twin pregnancies after GIFT and IVF. Arch Gynecol Obstet 268: 256–261CrossRefGoogle Scholar
  22. 22.
    Jackson RA, Gibson KA, Wu YW, Croughan MS (2004) Perinatal outcomes in singletons following in vitro fertilization; a meta-analysis. Obstet Gynecol 103:551–563PubMedGoogle Scholar
  23. 23.
    Verlaenen H, Cammu H, Derde MP, Amy JJ (1995) Singleton pregnancy after in vitro fertilization: expectations and outcome. Obstet Gynecol 86:906–910PubMedCrossRefGoogle Scholar
  24. 24.
    Koivurova S, Hartikainen AL, Gissler M, Hemminki E, Sovio U, Jarvelin MR (2002) Neonatal outcome and congenital malformations in children born after in-vitro fertilization. Hum Reprod 17:1391–1398PubMedCrossRefGoogle Scholar
  25. 25.
    Reubinoff BE, Samueloff A, Ben-Haim M, Friedler S, Schenker JG, Lewin A (1997) Is the obstetric outcome of in vitro fertilized singleton gestations different from natural ones? A controlled study. Fertil Steril 67:1077–1083PubMedCrossRefGoogle Scholar
  26. 26.
    International Classification of diseases, 10th revision. http://www.whoint/classifications/apps/icd/icd10online
  27. 27.
    Multiple pregnancies and births; considering the risks. HFEA 2006.
  28. 28.
    Sutcliffe AG, Derom C (2006) Follow-up of twins: health, behaviour, speech, language outcomes and implications for parents. Early Hum Dev 82(6):379–386PubMedCrossRefGoogle Scholar
  29. 29.
    Criniti A, Thyer A, Chow G, Lin P, Klein N, Soules M (2005) Elective single blastocyst transfer reduces twin rates without compromising pregnancy rates. Fertil Steril 84(6):1613–1619PubMedCrossRefGoogle Scholar
  30. 30.
    Bergh C, Kjellberg AT, Karlstrom PO (2005) Single-embryo fertilization in vitro. Maintained birth rate in spite of dramatically reduced multiple birth frequency. Lakartidningen 102(46):3444–3447, 3449PubMedGoogle Scholar
  31. 31.
    Blondel B, Macfarlane A, Gissler M, Breart G, Zeitlin J (2006) Preterm birth and multiple pregnancy in European countries participating in the PERISTAT project. BJOG 113:528–535PubMedCrossRefGoogle Scholar
  32. 32.
    De Sutter P, Delbaere I, Gerris J et al (2006) Birthweight of singletons after assisted reproduction is higher after single- than double-embryo transfer. Hum Reprod 21(10):2633–2637PubMedCrossRefGoogle Scholar
  33. 33.
    De Neuborg D, Gerris J, Mangelshots K et al (2006) The obstetrical and neonatal outcome of babies born after single-embryo transfer in IVF/ICSI compares favourably to spontaneously conceived babies. Hum Reprod 21(4):1041–1046CrossRefGoogle Scholar
  34. 34.
    Kwong WY, Miller DJ, Wilkins AP et al (2007) Maternal low protein diet restricted to the preimplantation period induces a gender-specific change on hepatic gene expression in rat fetuses. Mol Reprod Dev 74(1):48–56PubMedCrossRefGoogle Scholar
  35. 35.
    Gardner DS, Fletcher AJ, Bloomfield MR et al (2002) Effects of prevailing hypoxaemia, acidaemia or hypoglycaemia upon the cardiovascular, endocrine and metabolic responses to acute hypoxaemia in the ovine fetus. J Physiol 540(Pt 1):351–366PubMedCrossRefGoogle Scholar
  36. 36.
    Gopalakrishnan GS, Gardner DS, Dandrea J et al (2005) Influence of maternal pre-pregnancy body composition and diet during early-mid pregnancy on cardiovascular function and nephron number in juvenile sheep. Br J Nutr 94(6):938–947PubMedCrossRefGoogle Scholar
  37. 37.
    Rosebloom TJ, van der Meulen JHP, Osmond C et al (2000) Plasma lipid levels in adults after prenatal exposure to the Dutch famine. Am J Clin Nutr 72:1101–1106Google Scholar
  38. 38.
    Ravelli AJC, van der Meulen JHP, Osmond C, Barker DJP, Bleker OP (1999) Obesity at the age of 50 year in men and women exposed to famine prenatally. Am J Clin Nutr 70:811–816PubMedGoogle Scholar
  39. 39.
    Rosebloom TJ, van der Meulen JHP, Ravelli AJC et al (2000) Plasma fibrinogen and factor VII concentrations in adults after prenatal exposure to famine. Br J Haematol 111:112–117CrossRefGoogle Scholar
  40. 40.
    Rosebloom TJ, van der Meulen JHP, Osmond C et al (2000) Coronary heart disease after prenatal exposure to the Dutch famine, 1944–1945. Heart 84:595–598CrossRefGoogle Scholar
  41. 41.
    Pembery ME, Bygren LO, Kaati G et al ALSPAC Study Team. (2006) Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet 14(2):131–132CrossRefGoogle Scholar
  42. 42.
    Young LE, Fernandes K, McEvoy TG et al (2001) Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat Genet 27:153–154PubMedCrossRefGoogle Scholar
  43. 43.
    Maher ER, Brueton LA, Bowdin SC et al (2003) Beckwith–Wiedemann syndrome and assisted reproductive technology (ART). J Med Genet 40:62–64PubMedCrossRefGoogle Scholar
  44. 44.
    Gosden R, Trasler J, Lucifero D, Faddy M (2003) Rare congenital disorders, imprinted genes, and assisted reproductive technology. Lancet 361(9373):1975–1977PubMedCrossRefGoogle Scholar
  45. 45.
    Allen C, Reardon W (2005) Assisted reproductive technology and defects of genomic imprinting. BJOG 112:1589–1594PubMedCrossRefGoogle Scholar
  46. 46.
    National Institute for Clinical Excellence Antenatal care—routine care for the healthy pregnant woman. Clinical Guideline 6. RCOG Press, LondonGoogle Scholar
  47. 47.
    Sylvan K, Ryding EL, Rydhstroem H (2005) Routine ultrasound screening in the third trimester: a population-based study. Acta Obstet Gynecol Scand 84(12):1154–1158PubMedCrossRefGoogle Scholar
  48. 48.
    Kopta MM, May RR, Crane JP (1983) A comparison of the reliability of the estimated date of confinement predicted by crown-rump length and biparietal diameter. Am J Obstet Gynecol 145(5):562–565PubMedGoogle Scholar
  49. 49.
    Romundstad LB, Romundstad PR, Sunde A, von During V, Skjaerven R, Vatten LJ (2006) Increased risk of placenta previa in pregnancies following IVF/ICSI: a comparison of ART and non-ART pregnancies in the same mother. Hum Reprod 21(9):2353–2358PubMedCrossRefGoogle Scholar
  50. 50.
    Obstetric Cholestasis. RCOG Guideline 43. RCOG press,London. January 2006Google Scholar
  51. 51.
    Abedin P, Weaver JB, Egginton E (1999) Intrahepatic cholestasis of pregnancy: prevalence and ethnic distribution. Ethn Health 4(1–2):35–37PubMedCrossRefGoogle Scholar
  52. 52.
    Silver RI, Rodriguez R, Chang TS, Gearhart JP (1999) In vitro fertilization is associated with an increased risk of hypospadias. J Urol 161:1954–1957PubMedCrossRefGoogle Scholar
  53. 53.
    Kallen B, Finnstrrom O, Nygren KG, Olausson PO (2005) In vitro fertilization (IVF) in Sweden: risk for congenital malformations after different IVF methods. Birth Defects Res A Clin Mol Teratol 73:162–169PubMedCrossRefGoogle Scholar
  54. 54.
    Bonduelle M, Wennerholm UB, Loft A et al (2005) A multi-centre cohort study of the physical health of 5-year-old children conceived after intracytoplasmic sperm injection, in vitro fertilisation and natural conception. Hum Reprod 20(2): 413–429PubMedCrossRefGoogle Scholar

Copyright information

© Royal Academy of Medicine in Ireland 2008

Authors and Affiliations

  • C. Allen
    • 1
  • S. Bowdin
    • 2
  • R. F. Harrison
    • 1
  • A. G. Sutcliffe
    • 3
  • L. Brueton
    • 2
  • G. Kirby
    • 2
  • J. Kirkman-Brown
    • 4
  • C. Barrett
    • 4
  • W. Reardon
    • 5
  • E. Maher
    • 6
  1. 1.Human Assisted Reproduction Ireland, Rotunda HospitalDublinIreland
  2. 2.West Midlands Regional Genetics Service, Birmingham Womens Healthcare NHS TrustBirminghamUK
  3. 3.Royal Free and University College Medical School, University College LondonLondonUK
  4. 4.Reproductive Biology and Genetics GroupThe Medical School, University of BirminghamBirminghamUK
  5. 5.National Centre for Medical Genetics, Our Lady’s Hospital for Sick ChildrenDublinIreland
  6. 6.Section of Medical and Molecular GeneticsUniversity of BriminghamBirminghamUK

Personalised recommendations