Advertisement

Irish Journal of Medical Science

, Volume 176, Issue 2, pp 105–109 | Cite as

Incidence and significance of the JAK2 V617F mutation in patients with chronic myeloproliferative disorders

  • S. E. Langabeer
  • F. Ni Ainle
  • E. Conneally
  • M. Lawler
Original Article

Abstract

Background

The chronic myeloproliferative disorders (MPD) are clonal haemopoietic stem cell disorders.

Aims

The incidence of JAK2 V617F mutation was sought in a population of patients with MPD.

Methods

The JAK2 V617 mutation status was determined in 79 patients with known MPD and 59 patients with features suggestive of MPD.

Results

The mutation was found in patients with polycythaemia vera, essential thrombocythaemia, idiopathic myelofibrosis and in patients with other chronic myeloproliferative disorders. Eight JAK2 V617F positive cases were identified amongst those patients with features suggestive of MPD.

Conclusions

The incidence of the JAK2 V617F mutation in MPD patients is similar to that reported by other groups. The assay confirmed and refined the diagnosis of several patients with features indicative of MPD. We suggest screening for this mutation in all patients with known and suspected MPD as identification is valuable in classification and is a potential target for signal transduction therapy.

Keywords

Essential thrombocythaemia Idiopathic myelofibrosis JAK2 V617F Myeloproliferative disorders Polycythaemia vera Tyrosine kinase 

Notes

Acknowledgments

The authors are grateful to Professor S. McCann, Dr P. Browne and Dr E. Vandenberghe, Department of Haematology, St. James’s Hospital, Dublin and all other clinicians who have provided patient material for molecular investigation of MPD.

References

  1. 1.
    Jaffe ES, Harris NL, Stein H, Vardiman JW (eds) (2001) World health organization classification of tumours: pathology and genetics of tumours of haematopoietic and lymphoid tissues. IARC Press, LyonGoogle Scholar
  2. 2.
    Hughes T, Branford S (2006) Molecular monitoring of BCR-ABL as a guide to clinical management in chronic myeloid leukaemia. Blood Rev 20:29–41PubMedCrossRefGoogle Scholar
  3. 3.
    Deininger M, Buchdunger E, Druker BJ (2005) The development of Imatinib as a therapeutic agent for chronic myeloid leukaemia. Blood 105:2640–2653PubMedCrossRefGoogle Scholar
  4. 4.
    Frohling S, Scholl C, Gilliland DG, Levine RL (2005) Genetics of myeloid malignancies: pathogenetic and clinical implications. J Clin Oncol 23:6285–6295PubMedCrossRefGoogle Scholar
  5. 5.
    Kralovics R, Skoda RC (2005) Molecular pathogenesis of Philadelphia chromosome negative myeloproliferative disorders. Blood Rev 19:1–13PubMedCrossRefGoogle Scholar
  6. 6.
    Baxter EJ, Scott LM, Campbell PJ et al (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365:1054–1061PubMedGoogle Scholar
  7. 7.
    Kralovics R, Passamonti F, Buser AS et al (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Eng J Med 352:1779–1790CrossRefGoogle Scholar
  8. 8.
    Levine RL, Wadleigh M, Cools J et al (2005) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7:387–397PubMedCrossRefGoogle Scholar
  9. 9.
    James C, Ugo V, Le Couedic JP, et al (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434:1144–1148PubMedCrossRefGoogle Scholar
  10. 10.
    Jones AV, Kreil S, Zoi K et al (2005) Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood 106:2162–2168PubMedCrossRefGoogle Scholar
  11. 11.
    Zhao R, Xing S, Li Z, Li Q, Krantz SB, Zhao ZJ (2005) Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem 280:22788–22792PubMedCrossRefGoogle Scholar
  12. 12.
    Yamaoka K, Saharinen P, Pesu M, Holt VET, Silvennoinen O, O’Shea JJ (2004) The janus kinases (Jaks). Genome Biol 5:253PubMedCrossRefGoogle Scholar
  13. 13.
    Kaushansky K (2005) On the molecular origins of the chronic myeloproliferative disorders: it all makes sense. Blood 105:4187–4190PubMedCrossRefGoogle Scholar
  14. 14.
    Jelinek J, Oki Y, Gharibyan V et al (2005) JAK2 mutation 1849G > T is rare in acute leukemias but can be found in CMML, Philadelphia chromosome-negative CML and megakaryoblastic leukaemia. Blood 106:3370–3373PubMedCrossRefGoogle Scholar
  15. 15.
    Levine RL, Loriaux M, Huntly BJ et al (2005) The JAK2 V617F activating mutation occurs in chronic myelomonocytic leukaemia and acute myeloid leukaemia, but not in acute lymphoblastic leukaemia or chronic lymphocytic leukaemia. Blood 106:3377–3379PubMedCrossRefGoogle Scholar
  16. 16.
    Lee JW, Kim YG, Soung YH et al (2006) The JAK2 V617F mutation in de novo acute myelogenous leukemias. Oncogene 25:1434–1436PubMedCrossRefGoogle Scholar
  17. 17.
    Ohyashiki K, Aota Y, Akahane D et al (2005) The JAK2 V617F tyrosine kinase mutation in myelodysplastic syndromes (MDS) developing myelofibrosis indicates the myeloproliferative nature in a subset of MDS patients. Leukemia 19:2359–2360PubMedCrossRefGoogle Scholar
  18. 18.
    Tono C, Xu G, Toki T et al (2005) JAK2 Val617Phe activating tyrosine kinase mutation in juvenile myelomonocytic leukaemia. Leukemia 19:1843–1844PubMedCrossRefGoogle Scholar
  19. 19.
    McLornan DP, Percy MJ, Jones AV, Cross NC, McMullin MF (2005) Chronic neutrophilic leukaemia with an associated V617F JAK2 tyrosine kinase mutation. Haematologica 90:1696–1697Google Scholar
  20. 20.
    Melzner I, Weniger MA, Menz CK, Moller P (2006) Absence of the JAK2 V617F activating mutation in classical Hodgkin lymphoma and primary mediastinal B-cell lymphoma. Leukemia 20:157–158PubMedCrossRefGoogle Scholar
  21. 21.
    Lee JW, Soung YH, Kim SY et al (2006) JAK2 V617F mutation is uncommon in non-Hodgkin lymphomas. Leuk Lymphoma 47:313–314PubMedCrossRefGoogle Scholar
  22. 22.
    Sulong S, Case M, Minto L, Wilkins B, Hall A, Irving J (2005) The V617F mutation in JAK2 is not found in childhood acute lymphoblastic leukaemia. Brit J Haematol 130:964–965CrossRefGoogle Scholar
  23. 23.
    van Dongen JJ, Macintyre EA, Gabert JA et al (1999) Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukaemia for detection of minimal residual disease. Report of the BIOMED-1 concerted action: investigation of minimal residual disease in acute leukaemia. Leukemia 13:1901–1928PubMedCrossRefGoogle Scholar
  24. 24.
    Campbell PJ, Green AR (2005) Management of polycythemia vera and essential thrombocythemia. Hematology (Am Soc Hematol Educ Program), pp 201–208Google Scholar
  25. 25.
    Johan MF, Goodeve AC, Bowen DT, Frew MF, Reilly JT (2005) JAK2 V617F mutation is uncommon in chronic myelomonocytic leukaemia. Brit J Haematol 130:968CrossRefGoogle Scholar
  26. 26.
    Steensma DP, Dewald GW, Lasho TL et al (2005) The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both atypical myeloproliferative disorders and myelodysplastic syndromes. Blood 106:1207–1209PubMedCrossRefGoogle Scholar
  27. 27.
    Scott LM, Campbell PJ, Baxter EJ et al (2005) The V617F JAK2 mutation is uncommon in cancers and in myeloid malignancies other than the classic myeloproliferative disorders. Blood 106:2920–2921PubMedCrossRefGoogle Scholar
  28. 28.
    Tefferi A, Lasho TL, Schwager SM et al (2006) The clinical phenotype of wild-type, heterozygous and homozygous JAK2 (V617F) in polycythemia vera. Cancer 106:631–635PubMedCrossRefGoogle Scholar
  29. 29.
    Wolanskyj AP, Lasho TL, Schwager SM et al (2005) JAK2 mutation in essential thrombocythaemia: clinical associations and long-term prognostic relevance. Brit J Haematol 131:208–213CrossRefGoogle Scholar
  30. 30.
    Cheung B, Radia D, Pantelidis P, Yadegarfar G, Harrison C (2006) The presence of the JAK2 V617F mutation is associated with a higher haemoglobin and increased risk of thrombosis in essential thrombocythaemia. Brit J Haematol 132:244–245CrossRefGoogle Scholar
  31. 31.
    Tefferi A, Lasho TL, Schwager SM et al (2005) The JAK2 (V617F) tyrosine kinase mutation in myelofibrosis with myeloid metaplasia: lineage specificity and clinical correlates. Brit J Haematol 131:320–328CrossRefGoogle Scholar
  32. 32.
    Campbell PJ, Griesshammer M, Dohner K et al (2006) The V617F mutation in JAK2 is associated with poorer survival in idiopathic myelofibrosis. Blood 107:2098–2100PubMedCrossRefGoogle Scholar
  33. 33.
    Bench A, Li J, Huntly BJ et al (2004) Characterization of the imprinted polycomb gene L3MBTL, a candidate 20q tumour suppressor gene, in patients with myeloid malignancies. Brit J Haematol 127:509–518CrossRefGoogle Scholar
  34. 34.
    Futterer A, Campanero MR, Leonardo E et al (2005) Dido gene expression alterations are implicated in the induction of haematological myeloid neoplasms. J Clin Invest 115:2351–2362PubMedCrossRefGoogle Scholar
  35. 35.
    Chalandon Y, Schwaller J (2005) Targeting mutated protein tyrosine kinases and their signalling pathways in hematologic malignancies. Haematologica 90:949–968PubMedGoogle Scholar

Copyright information

© Royal Academy of Medicine in Ireland 2007

Authors and Affiliations

  • S. E. Langabeer
    • 1
  • F. Ni Ainle
    • 2
  • E. Conneally
    • 2
  • M. Lawler
    • 1
    • 3
  1. 1.Cancer Molecular Diagnostics, Central Pathology LaboratorySt. James’s HospitalDublin 8Ireland
  2. 2.Department of HaematologySt. James’s HospitalDublinIreland
  3. 3.Institute of Molecular MedicineSt. James’s Hospital and Trinity College DublinDublinIreland

Personalised recommendations