wissen kompakt

, Volume 7, Issue 2, pp 13–26 | Cite as

Single-File-Systeme zur maschinellen Wurzelkanalaufbereitung

Zahnärztliche Fortbildung
  • 103 Downloads

Zusammenfassung

Die Vereinfachung von Abläufen in der Zahnmedizin – einhergehend mit einer verbesserten Erfolgsquote, kürzerer Behandlungszeit und geringeren Kosten – ist seit jeher die Motivation zur Entwicklung neuer Technologien. In der Endodontie war die Einführung von Nickel-Titan-Instrumenten der Meilenstein zur Erleichterung der Aufbereitung auch stark gekrümmter Wurzelkanäle mit reproduzierbar vorhersagbaren Ergebnissen. Unterschiedlichste Systeme sind auf dem Markt etabliert und bereits wissenschaftlich als auch klinisch solide untersucht. Das häufige Wechseln von Instrumenten während der Wurzelkanalaufbereitung und die ungelöste Problematik einer hygienischen Aufbereitung der Instrumente könnten mit der aktuellen Entwicklung der neuen Ein-Feilen-Systeme hinfällig werden. Der folgende Beitrag beschreibt das Design und die spezifischen Eigenschaften der Single-File-Systeme und beantwortet die Frage, ob dieses neue Konzept den konventionellen Mehr-Feilen-Systemen ebenbürtig ist.

Schlüsselwörter

Ein-Feilen-Systeme Nickel-Titan Reziprok Rotierend Wurzelkanal 

Literatur

  1. 1.
    Hülsmann M, Peters OA, Dummer PMH (2005) Mechanical preparation of root canals: shaping goals, techniques and means. Endod Topics 10:30–76CrossRefGoogle Scholar
  2. 2.
    Hülsmann M (2000) Entwicklung einer Methodik zur standardisierten Überprüfung verschiedener Aufbereitungsparameter und vergleichende in-vitro-Untersuchung unterschiedlicher Systeme zur maschinellen Wurzelkanalaufbereitung. Quintessenz, BerlinGoogle Scholar
  3. 3.
    Petschelt A (1989) Endodontie: Maschinell – manuell? Die Aufbereitung und Spülung des Wurzelkanals. Dtsch Zahnärztl Z 44:407–413PubMedGoogle Scholar
  4. 4.
    Schäfer E, Hickel R, Geurtsen W et al (2000) Wurzelkanalaufbereitungen. Gemeinsame Stellungnahme der DGZMK und der DGZ. Dtsch Zahnärztl Z 55:719–721Google Scholar
  5. 5.
    Schäfer E (1999) Metallurgie und Eigenschaften von Nickel-Titan-Handinstrumenten. Endodontie 8:213Google Scholar
  6. 6.
    Haikel Y, Serfaty R, Bateman G et al (1999) Dynamic and cyclic fatigue of engine-driven rotary nickel-titanium endodontic instruments. J Endod 25:434–440PubMedCrossRefGoogle Scholar
  7. 7.
    Schäfer E, Fritzenschaft B (1999) Vergleichende Untersuchung zweier permanent rotierender Wurzelkanalaufbereitungssysteme auf Nickel-Titan-Basis. Endodontie 8:213–215Google Scholar
  8. 8.
    Szep S, Gerhardt T, Leitzbach C et al (2001) Preparation of severely curved simulated root canals using engine-driven rotary and conventional hand instruments. Clin Oral Investig 5:17–25PubMedCrossRefGoogle Scholar
  9. 9.
    Gambarini G (2000) Rationale for the use of low torque endodontic motors in root canal instrumentation. Endod Dent Traumatol 16:95–99PubMedCrossRefGoogle Scholar
  10. 10.
    Yared GM, Bou Dagher FE, Machtou P (2001) Failure of ProFile instruments used with high and low torque motors. Int Endod J 34:471–475PubMedCrossRefGoogle Scholar
  11. 11.
    Berutti E, Negro AR, Lendini M, Pasqualini D (2004) Influence of manual preflaring and torque on the failure rate of ProTaper instruments. J Endod 30: 228–230PubMedCrossRefGoogle Scholar
  12. 12.
    Blum JY, Machtou P, Ruddle C et al (2003) Analysis of mechanical preparations in extracted teeth using ProTaper rotary instruments: value of the safety quotient. J Endod 29:567–575PubMedCrossRefGoogle Scholar
  13. 13.
    Yared G (2008) Canal preparation using only one Ni-Ti rotary instrument: preliminary observations. Int Endod J 41:339–344PubMedCrossRefGoogle Scholar
  14. 14.
    Roane JB, Sabala CL, Duncanson MG Jr (1985) The „balanced force“ concept for instrumentation of curved canals. J Endod 11:203–211PubMedCrossRefGoogle Scholar
  15. 15.
    Hou X, Yahata Y, Hayashi Y et al (2011) Phase transformation behaviour and bending property of twisted nickel-titanium endodontic instruments. Int Endod J 44:253–258PubMedCrossRefGoogle Scholar
  16. 16.
    Johnson E, Lloyd A, Kuttler S, Namerow K (2008) Comparison between a novel nickel titanium alloy and 508 Nitinol on the cyclic fatigue life of Profile 25/.04 rotary instruments. J Endod 34:1406–1409PubMedCrossRefGoogle Scholar
  17. 17.
    Ye J, Gao Y (2012) Metallurgical characterization of M-Wire nickel-titanium shape memory alloy used for endodontic rotary instruments during low-cycle fatigue. J Endod 38:105–107PubMedCrossRefGoogle Scholar
  18. 18.
    Goldberg M, Dahan S, Machtou P (im Druck) Centering ability and influence of experience when using WaveOne single-file technique in simulated canals. Int J Dent: Epub 16. Okt. 2012, doi: 10.1155/2012/206321, http://www.ncbi.nlm.nih.gov/pubmed/23118749. Zugegriffen: 08. Feb. 2013Google Scholar
  19. 19.
    Kim HC, Kwak SW, Cheung GS et al (2012) Cyclic fatigue and torsional resistance of two new nickel-titanium instruments used in reciprocation motion: Reciproc versus WaveOne. J Endod 38:541–544PubMedCrossRefGoogle Scholar
  20. 20.
    Gambarini G, Gergi R, Naaman A et al (2012) Cyclic fatigue analysis of twisted file rotary NiTi instruments used in reciprocating motion. Int Endod J 45:802–806PubMedCrossRefGoogle Scholar
  21. 21.
    Gambarini G, Rubini AG, Al Sudani D et al (2012) Influence of different angles of reciprocation on the cyclic fatigue of nickel-titanium endodontic instruments. J Endod 38:1408–1411PubMedCrossRefGoogle Scholar
  22. 22.
    De-Deus G, Barino B, Marins J et al (2012) Self-adjusting file cleaning-shaping-irrigation system optimizes the filling of oval-shaped canals with thermoplasticized gutta-percha. J Endod 38:846–849PubMedCrossRefGoogle Scholar
  23. 23.
    Solomonov M, Paqué F, Fan B et al (2012) The challenge of C-shaped canal systems: a comparative study of the self-adjusting file and ProTaper. J Endod 38:209–214PubMedCrossRefGoogle Scholar
  24. 24.
    West J (2010) The endodontic glidepath: secrets to rotary success. Dent Today 29:86–93PubMedGoogle Scholar
  25. 25.
    Mounce R (2005) Endodontic K-Files: invaluable endangered species or ready for the Smithsonian? Dent Today 24:102–104PubMedGoogle Scholar
  26. 26.
    West J (2006) Endodontic update. J Esthet Restor Dent 18:280–300PubMedCrossRefGoogle Scholar
  27. 27.
    Peters OA, Peters CI, Schonenberg K, Barbakow F (2003) ProTaper rotary root canal preparation: assessment of torque and force in relation to canal anatomy. Int Endod J 36:93–99PubMedCrossRefGoogle Scholar
  28. 28.
    Roland DD, Andelin WE, Browning DF et al (2002) The effect of preflaring on the rates of separation for 0.04 taper nickel-titanium rotary instruments. J Endod 28:543–545PubMedCrossRefGoogle Scholar
  29. 29.
    Lopes HP, Elias CN, Mangelli M et al (2012) Buckling resistance of pathfinding endodontic instruments. J Endod 38:402–404PubMedCrossRefGoogle Scholar
  30. 30.
    Lopes HP, Elias CN, Siqueira JF Jr et al (2012) Mechanical behavior of pathfinding endodontic instruments. J Endod 38:1417–1421PubMedCrossRefGoogle Scholar
  31. 31.
    Berutti E, Chiandussi G, Paolino DS et al (2011) Effect of canal length and curvature on working length alteration with WaveOne reciprocating files. J Endod 37:1687–1690PubMedCrossRefGoogle Scholar
  32. 32.
    Berutti E, Paolino DS, Chiandussi G et al (2012) Root canal anatomy preservation of WaveOne reciprocating files with or without glide path. J Endod 38:101–104PubMedCrossRefGoogle Scholar
  33. 33.
    Pasqualini D, Bianchi CC, Paolino DS et al (2012) Computed micro-tomographic evaluation of glide path with nickel-titanium rotary PathFile in maxillary first molars curved canals. J Endod 38:389–393PubMedCrossRefGoogle Scholar
  34. 34.
    Alves Vde O, Bueno CE, Cunha RS et al (2012) Comparison among manual instruments and PathFile and Mtwo rotary instruments to create a glide path in the root canal preparation of curved canals. J Endod 38:117–120CrossRefGoogle Scholar
  35. 35.
    Uroz-Torres D, González-Rodríguez MP, Ferrer-Luque CM (2009) Effectiveness of a manual glide path on the preparation of curved root canals by using Mtwo rotary instruments. J Endod 35:699–702PubMedCrossRefGoogle Scholar
  36. 36.
    Bürklein S, Benten S, Schäfer E (im Druck) Shaping ability of different single-file systems in severely curved root canals of extracted teeth. Ind Endod J: Epub 13. Dez. 2013, doi:10.1111/iej.12037, http://onlinelibrary.wiley.com/doi/10.1111/iej.12037/abstract. Zugegriffen: 08. Feb. 2013Google Scholar
  37. 37.
    Bürklein S, Schäfer E (2012) Apically extruded debris with reciprocating single-file and full-sequence rotary instrumentation systems. J Endod 38:850–852PubMedCrossRefGoogle Scholar
  38. 38.
    Metzger Z, Zary R, Cohen R et al (2010) The quality of root canal preparation and root canal obturation in canals treated with rotary versus self-adjusting files: a three-dimensional micro-computed tomographic study. J Endod 36:1569–1573PubMedCrossRefGoogle Scholar
  39. 39.
    Paqué F, Ganahl D, Peters OA (2009) Effects of root canal preparation on apical geometry assessed by micro-computed tomography. J Endod 35:1056–1059PubMedCrossRefGoogle Scholar
  40. 40.
    Paqué F, Peters OA (2011) Micro-computed tomography evaluation of the preparation of long oval root canals in mandibular molars with the self-adjusting file. J Endod 37:517–521PubMedCrossRefGoogle Scholar
  41. 41.
    Peters OA, Laib A, Gohring TN, Barbakow F (2001) Changes in root canal geometry after preparation assessed by high-resolution computed tomography. J Endod 27:1–6PubMedCrossRefGoogle Scholar
  42. 42.
    Peters OA, Paqué F (2011) Root canal preparation of maxillary molars with the self-adjusting file: a micro-computed tomography study. J Endod 37:53–55PubMedCrossRefGoogle Scholar
  43. 43.
    Weiger R, Bruckner M, ElAyouti A, Lost C (2003) Preparation of curved root canals with rotary FlexMaster instruments compared to Lightspeed instruments and NiTi hand files. Int Endod J 36:483–490PubMedCrossRefGoogle Scholar
  44. 44.
    Wu MK, Sluis LW van der, Wesselink PR (2003) The capability of two hand instrumentation techniques to remove the inner layer of dentine in oval canals. Int Endod J 36:218–224PubMedCrossRefGoogle Scholar
  45. 45.
    Boutsioukis C, Gogos C, Verhaagen B et al (2010) The effect of apical preparation size on irrigant flow in root canals evaluated using an unsteady Computational Fluid Dynamics model. Int Endod J 43:874–881PubMedCrossRefGoogle Scholar
  46. 46.
    Boutsioukis C, Gogos C, Verhaagen B et al (2010) The effect of root canal taper on the irrigant flow: evaluation using an unsteady Computational Fluid Dynamics model. Int Endod J 43:909–916PubMedCrossRefGoogle Scholar
  47. 47.
    Hülsmann M (2008) Endodontie, 1. Aufl. Thieme, StuttgartGoogle Scholar
  48. 48.
    Merino A, Estevez R, Gregorio C de, Cohenca N (im Druck) The effect of different taper preparations on the ability of sonic and passive ultrasonic irrigation to reach the working length in curved canals. Int Endod J: Epub 11. Sep. 2012, doi:10.1111/iej.12006, http://www.ncbi.nlm.nih.gov/pubmed/23062105. Zugegriffen: 08. Feb. 2013Google Scholar
  49. 49.
    Munoz HR, Camacho-Cuadra K (2012) In vivo efficacy of three different endodontic irrigation systems for irrigant delivery to working length of mesial canals of mandibular molars. J Endod 38:445–448PubMedCrossRefGoogle Scholar
  50. 50.
    Bürklein S, Hinschitza K, Dammaschke T, Schäfer E (2012) Shaping ability and cleaning effectiveness of two single-file systems in severely curved root canals of extracted teeth: Reciproc and WaveOne versus Mtwo and ProTaper. Int Endod J 45:449–461PubMedCrossRefGoogle Scholar
  51. 51.
    -Baumann MA (2012) WaveOne – first experience of third-year students. Roots 2:20–23Google Scholar
  52. 52.
    Berutti E, Chiandussi G, Paolino DS et al (2012) Canal shaping with WaveOne Primary reciprocating files and ProTaper system: a comparative study. J Endod 38:505–509PubMedCrossRefGoogle Scholar
  53. 53.
    Arias A, Perez-Higueras JJ, Macorra JC de la (2012) Differences in cyclic fatigue resistance at apical and coronal levels of Reciproc and WaveOne new files. J Endod 38:1244–1248PubMedCrossRefGoogle Scholar
  54. 54.
    Pedullà E, Grande NM, Plotino G et al (im Druck) Cyclic fatigue resistance of two reciprocating nickel-titanium instruments after immersion in sodium hypochlorite. Int Endod J: Epub 26. Jul. 2012, doi: 10.1111/j.1365–2591.2012.02100.x, http://www.ncbi.nlm.nih.gov/pubmed/22831397. Zugegriffen: 08. Feb. 2013Google Scholar
  55. 55.
    Plotino G, Grande NM, Testarelli L, Gambarini G (2012) Cyclic fatigue of Reciproc and WaveOne reciprocating instruments. Int Endod J 45:614–618PubMedCrossRefGoogle Scholar
  56. 56.
    Bürklein S, Tsotsis P, Schäfer E (im Druck) Incidence of dentinal defects after root canal preparation: reciprocating versus rotary instrumentation. J Endod: Epub 28 Jan. 2013, doi:10.1016/j.joen.2012.11.045, http://www.jendodon.com/article/S0099-2399%2812%2901122-3/abstract. Zugegriffen: 08. Feb. 2013Google Scholar
  57. 57.
    Azarpazhooh A, Leake JL (2006) Prions in dentistry – what are they, should we be concerned, and what can we do? J Can Dent Assoc 72:53–60PubMedGoogle Scholar
  58. 58.
    Department of Health (UK) (2007) Advice for dentists on the re-use of endodontic instruments and variant Creutzfeldt-Jacob Disease (vCJD). Letter, April 2007. http://www.dh.gov.uk/en/Advancedsearch/SearchResults/index.htm?bucketVals=1%3B551%3B555%3B597&ph=&ssUrlType=2&ssUrlType=2&ssUrlType=2&ssUrlType=2&searchTerms=Dental%20diseases. Zugegriffen: 08. Feb. 2013Google Scholar
  59. 59.
    Schneider K, Korkmaz Y, Addicks K, Lang H et al (2007) Prion Protein (PrP) in human teeth: an unprecedented pointer to PrP’s function. J Endod 33:110–113PubMedCrossRefGoogle Scholar
  60. 60.
    Sonntag D, Peters OA (2007) Effect of prion decontamination protocols on nickel-titanium rotary surfaces. J Endod 33:442–446PubMedCrossRefGoogle Scholar
  61. 61.
    Vassey M et al (2011) A quantitative assessment of residual protein levels on dental instruments reprocessed by manual, ultrasonic and automated cleaning methods. Br Dent J 14:210Google Scholar
  62. 62.
    Walker JT, Dickinson J, Sutton JM et al (2007) Cleanability of dental instruments–implications of residual protein and risks from Creutzfeldt-Jakob disease. Br Dent J 203:395–401PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg und Freier Verband deutscher Zahnärzte e.V. 2013

Authors and Affiliations

  1. 1.Zentrale Interdisziplinäre Ambulanz (ZIA), Zentrum für Zahn-, Mund- und KieferheilkundeWestfälische Wilhelms-Universität MünsterMünsterDeutschland

Personalised recommendations