Advertisement

JOM

, Volume 51, Issue 4, pp 23–27 | Cite as

The role of grain structure in the creep and fatigue of ni-based superalloy PM 1000

  • M. Heilmaier
  • F. E. H. Müller
Research Summary Mechanical Behavior

Abstract

A study of the monotonic and cyclic deformation behavior of the recently developed oxide-dispersion-strengthened, nickel-based superalloy PM 1000 was carried out at temperatures up to 1,200°C in air. The influence of grain structure and texture was investigated using two heats with an identical particle microstructure—a )100*-fiber-structured bar material with a grain aspect ratio of ten along the longitudinal direction and a pancake-structured sheet material with a grain aspect ratio of four and a )100*{011}-cube on edge texture. Both creep resistance and lifetime in cyclic deformation depend strongly on texture and weakly on the grain aspect ratio, which determines the fracture path. Instead, lifetime can be predicted on the basis of the different Young’s moduli in the longitudinal and longitudinal-transverse direction, respectively.

Keywords

Mechanical Alloy Strain Amplitude Creep Curve Sheet Material Minimum Creep Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.S. Benjamin, Metall. Trans., 1 (1970), p. 2943.Google Scholar
  2. 2.
    J. Rösler and E. Arzt, Acta Metall., 38 (1990), p. 671.CrossRefGoogle Scholar
  3. 3.
    R.F. Singer and E. Arzt, High Temp. Alloys for Gas Turbines and other Applications, ed. W. Betz et al. (Dordrecht, Netherlands: Reidel Publ. Company, 1986), p. 97.Google Scholar
  4. 4.
    B.A. Wilcox and A.H. Clauer, Acta Metall., 20 (1972), p. 743.CrossRefGoogle Scholar
  5. 5.
    V. Banhardt, M. Nader, and E. Arzt, Metall. Mater. Trans., 26A (1995), p. 1067.Google Scholar
  6. 6.
    J.J. Stephens and W.D. Nix, Metall. Trans., 16 A (1985), p. 1307.Google Scholar
  7. 7.
    J.D. Whittenberger, Mater Sci. Eng., 54 (1982), p. 81.CrossRefGoogle Scholar
  8. 8.
    F. Förster, Z. Metallkunde, 29 (1937), p. 109.Google Scholar
  9. 9.
    R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 3rd ed. (New York: John Wiley & Sons, 1989).Google Scholar
  10. 10.
    M. Heilmaier and B. Reppich, Mater. Sci. Eng., A234–236 (1997), p. 501.Google Scholar
  11. 11.
    J.J. Stephens and W.D. Nix, Metall. Trans., 17 A (1986), p. 281.Google Scholar
  12. 12.
    F.E.H. Müller, M. Heilmaier, and L. Schultz, Comp. Mater. Sci., 9 (1997), p. 85.CrossRefGoogle Scholar
  13. 13.
    E. Arzt, Res Mechanica, 31 (1991), p. 399.Google Scholar
  14. 14.
    W.F. Hosford, The Mechanisms of Crystals and Textured Polycrystals (Oxford, U.K.: Oxford University Press. 1993).Google Scholar
  15. 15.
    M. Heilmaier et al., Scripta Mater., 39 (1998), p. 1365.CrossRefGoogle Scholar
  16. 16.
    D. Mukherji et al., Acta Metall., 24 (1991), p. 1515.CrossRefGoogle Scholar
  17. 17.
    H.J. Frost and M.F. Ashby, Deformation Mechanism Maps (Oxford, U.K.: Oxford University Press, 1982).Google Scholar
  18. 18.
    M.Y. Nazmy, Low Cycle Fatigue, ASTM STP 942 (1988), p. 385.Google Scholar
  19. 19.
    R.W. Smith, M.H. Hirschberg, and S.S. Manson, NASA TN D-1574, NASA (April 1963).Google Scholar
  20. 20.
    M.Y. Nazmy, Met. Trans., 14A (1983), p. 449.Google Scholar
  21. 21.
    R.W. Smith, P. Watson, and T.H. Topper, J. Mater. JMLSA, 5 (1970), p. 767.Google Scholar

Copyright information

© TMS 1999

Authors and Affiliations

  • M. Heilmaier
    • 1
  • F. E. H. Müller
    • 2
  1. 1.the Institut für Festkörper und Werkstofforschung DresdenDresdenGermany
  2. 2.Plansee GmbHLechbruckGermany

Personalised recommendations