Advertisement

JOM

, Volume 50, Issue 12, pp 17–20 | Cite as

Producing metal parts with selective laser sintering/hot isostatic pressing

  • Suman Das
  • Martin Wohlert
  • Joseph J. Beaman
  • David L. Bourell
Overview Direct Fabrication

Abstract

Selective laser sintering/hot isostatic pressing is a hybrid direct laser fabrication method that combines the strengths of both processes. Selective laser sintering can produce complexly shaped metal components with an integral, gas-impermeable skin. These components can then be directly post-processed to full density by containerless hot isostatic pressing. The use of the hybrid fabrication method, envisioned as a rapid, low-cost replacement for conventional metal-can hot isostatic pressing, is currently being studied for alloy 625 and Ti-6Al-4V alloys. The micro-structure and mechanical properties of selective-laser-sintering processed and hot isostatically pressed post-processed material compare well with those of conventionally processed material.

Keywords

Selective Laser Sinter Skin Region Percent Density Full Density Solid Freeform Fabrication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Das et al., “Direct SLS Processing of Cermet Composite Turbine Sealing Components,” Materials and Manufacturing Processes, 13 (3) (1998).Google Scholar
  2. 2.
    M.L. Griffith et al., “Freeform Fabrication of Metallic Components Using Laser Engineered Net Shaping (LENS),” Proc. Solid Freeform Fabrication Symposium 1996 (Austin, TX: U. of Texas, 1996).Google Scholar
  3. 3.
    J. Mazumder et al., “The Direct Metal Deposition of H13 Tool Steel for 3-D Components,” JOM, 49 (5) (1997), pp. 55–60.Google Scholar
  4. 4.
    G.K. Lewis et al., “Properties of Near-Net Shape Metallic Components Produced by the Directed Light Fabrication Process” Proc. Solid Freeform Fabrication Symposium 1997 (Austin, TX: U. of Texas, 1997).Google Scholar
  5. 5.
    J.R. Fessler et al., “Laser Deposition of Metals for Shape Deposition Manufacturing,” Proc. Solid Freeform Fabrication Symposium 1996 (Austin, TX: U. of Texas, 1996).Google Scholar
  6. 6.
    F.G. Arcella et al., “Materials Characterization of LaserCast Titanium,” Advances in Powder Metallurgy and Particulate Materials, part 15, 2 (1996) pp. 151–165.Google Scholar
  7. 7.
    S. Das et al., “Direct Selective Laser Sintering of High Performance Metals for Containerless HIP,” Advances in Powder Metallurgy and Particulate Materials, part 21, 3 (1997) pp. 67–68.Google Scholar
  8. 8.
    R. Knight et al., “Metal Processing Using Selective Laser Sintering and Hot Isostatic Pressing” Proc. Solid Freeform Fabrication Symposium 1994 (Austin, TX: U. of Texas, 1994).Google Scholar
  9. 9.
    G. Zong et al., “Direct Selective Laser Sintering of High-Temperature Materials,” Proc. Solid Freeform Fabrication Symposium (Austin, TX: U. of Texas, 1992).Google Scholar
  10. 10.
    D.W. Freitag et al., “Laser Directed Fabrication of Full Density Metal Articles Using Hot Isostatic Pressing,” U.S. patent 5,640,667 (1997).Google Scholar
  11. 11.
    R.M. German, Powder Metallurgy Science (Princeton, NJ: MPIF, 1994), p. 57.Google Scholar
  12. 12.
    INCONEL Alloy 625, Inco Alloys International (1985).Google Scholar
  13. 13.
    Metals Handbook, ninth ed., vol. 9 (Metals Park, OH: ASM, 1985), p. 466.Google Scholar
  14. 14.
    ASTM B-367-93, “Standard Specification for Titanium and Titanium Castings” (Philadelphia, PA: ASTM, 1993).Google Scholar
  15. 15.
    ASTM B 348-95a, “Standard Specification for Titanium and Titanium Alloy Bars and Billets” (Philadelphia, PA: ASTM, 1995).Google Scholar
  16. 16.
    Metals Handbook, ninth ed., vol. 3 (Metals Park, OH: ASM, 1993), p. 388.Google Scholar
  17. 17.
    R. Boyer et al., “Ti-6Al-4V,” Materials Properties Handbook: Titanium Alloys (Materials Park, OH: ASM, 1994), p. 483.Google Scholar
  18. 18.
    ASTM E 1409-97, “Standard Test Method for Determination of Oxygen in Titanium and Titanium Alloys by the Inert Gas Fusion Technique” (Philadelphia, PA: ASTM, 1997).Google Scholar
  19. 19.
    C.F. Yolton, Crucible Research, personal communication (1998).Google Scholar

Copyright information

© TMS 1998

Authors and Affiliations

  • Suman Das
    • 1
  • Martin Wohlert
  • Joseph J. Beaman
  • David L. Bourell
  1. 1.Laboratory for Freeform FabricationUniversity of TexasAustin

Personalised recommendations