Skip to main content

Advertisement

Log in

Titanium Alloy Particles Formation in Electrical Discharge Machining and Fractal Analysis

  • Characterization of Waste-Derived Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A large amount of material is machined by electrical discharge machining (EDM) and the machined debris is flushed away as waste. The present study aims to establish EDM as a top-down method which can effectively machine hard-to-cut materials while the by-product, i.e., metal debris, can be utilized as micro/nano particles. In the present work, titanium-alloy grade 5 was machined using a die-sink EDM and the debris was collected from the dielectric fluid with a multistage filtration system. The collected debris was cleaned and the particles were characterized. Particles were examined by scanning electron microscopy, x-ray diffraction, and energy-dispersive x-rays to determine size, shape, and chemical crystal structure. The average size of the formed particles was 5.14 µm and they were spherical. A fractal analysis was performed on the SEM images to deepen the study of the formed particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. N. Aslan, B. Aksakal, and F. Findik, J. Mater. Sci. Mater. 327(32), 1. (2021).

    Google Scholar 

  2. H. Gunda, L.E. Klebanoff, P.A. Sharma, A.K. Varma, V. Dolia, K. Jasuja, V. Stavila, and A.C.S. Mater, Lett. 3, 535. (2021).

    Google Scholar 

  3. M.J. Mitchell, M.M. Billingsley, R.M. Haley, M.E. Wechsler, N.A. Peppas, and R. Langer, Nat. Rev. Drug Discov. 202(20), 101. (2020).

    Google Scholar 

  4. S. AlNadhari, N.M. Al-Enazi, F. Alshehrei, and F. Ameen, Environ. Res. 194, 110672. (2021).

    Article  Google Scholar 

  5. I. A. Khilji, S. Pathak, S. N. B. M. Saffe, S. Biswas, and Y. Singh, in Recent Advances in Mechanical Engineering, edited by K. M. Pandey, R. D. Misra, P. K. Patowari, and U. S. Dixit (Springer, Singapore, 2021), pp. 203–210.

  6. S. Kumar, S.K. Ghoshal, P.K. Arora, and L. Nagdeve, Mater. Manuf. Process. 36, 572. (2020).

    Article  Google Scholar 

  7. W. Ming, H. Jia, H. Zhang, Z. Zhang, K. Liu, J. Du, F. Shen, and G. Zhang, Ceram. Int. 46, 21813. (2020).

    Article  Google Scholar 

  8. Q. Li, and X. Yang, Int. J. Adv. Manuf. Technol. 106, 5033. (2020).

    Article  Google Scholar 

  9. S. Das, S. Paul, and B. Doloi, J. Brazilian Soc. Mech. Sci. Eng. 42, 148. (2020).

    Article  Google Scholar 

  10. D. Kumar, N.K. Singh, and V. Bajpai, J. Brazilian Soc. Mech. Sci. Eng. 42, 222. (2020).

    Article  Google Scholar 

  11. S. Liu, Y. Huang, and Y. Li, Int. J. Mach. Tools Manuf. 51, 653. (2011).

    Article  Google Scholar 

  12. T. Roy, and R. Balasubramaniam, Int. J. Adv. Manuf. Technol. 106, 4467. (2020).

    Article  Google Scholar 

  13. P. K. Rout and P. C. Jena, in Lect. Notes Mech. Eng. (Springer Science and Business Media Deutschland GmbH, pp. 489–497 (2021).

  14. M. Biesuz, T. Saunders, D. Ke, M.J. Reece, C. Hu, and S. Grasso, J. Mater. Sci. Technol. 69, 239. (2021).

    Article  Google Scholar 

  15. K. H. Tseng, H. L. Lee, C. Y. Liao, K. C. Chen, and H. S. Lin, J. Nanomater. 2013, (2013).

  16. W. Chang, Y. Xi, and H. Li, in Key Eng. Mater. (Trans Tech Publications Ltd, pp. 232–237 (2020).

  17. J. Lei, K. Jiang, X. Wu, H. Zhao, and B. Xu, Micromachines 11, 868. (2020).

    Article  Google Scholar 

  18. A. Bilal, M.P. Jahan, D. Talamona, and A. Perveen, Micromachines 10, 10. (2018).

    Article  Google Scholar 

  19. J. Marafona, and C. Wykes, Int. J. Mach. Tools Manuf. 40, 153. (2000).

    Article  Google Scholar 

  20. S.A. Taqi, and S.K. Shatner, Eng. Technol. J. 38, 1852. (2020).

    Article  Google Scholar 

  21. V.S.R. Murti, and P.K. Philip, Wear 117, 241. (1987).

    Article  Google Scholar 

  22. J.E. Abu Qudeiri, A.H.I. Mourad, A. Ziout, M.H. Abidi, and A. Elkaseer, Int. J. Adv. Manuf. Technol. 96, 1319. (2018).

    Article  Google Scholar 

  23. A.M.A. Al-Ahmari, M.S. Rasheed, M.K. Mohammed, and T. Saleh, Mater. Manuf. Process. 31, 447. (2016).

    Article  Google Scholar 

  24. A. Kumar, A. Mandal, A.R. Dixit, and A.K. Das, Mater. Manuf. Process. 33, 986. (2018).

    Article  Google Scholar 

  25. A.P. Dwivedi, and S.K. Choudhury, Mater. Manuf. Process. 31, 1844. (2016).

    Article  Google Scholar 

  26. B. Ekmekci, H. Yaşar, and N. Ekmekci, J. Manuf. Sci. Eng. Trans. ASME 138, (2016).

  27. A. Mandal, A.R. Dixit, A.K. Das, and N. Mandal, Mater. Manuf. Process. 31, 860. (2016).

    Article  Google Scholar 

  28. N.K. Jain, S. Pathak, and M. Alam, Ind. Eng. Chem. Res. 58, 602. (2019).

    Article  Google Scholar 

  29. A. Babapoor, M.S. Asl, Z. Ahmadi, and A.S. Namini, Ceram. Int. 44, 14541. (2018).

    Article  Google Scholar 

  30. A. Arman, Ş. Ţălu, C. Luna, A. Ahmadpourian, M. Naseri, and M. Molamohammadi, J. Mater. Sci. Mater. Electron. 2015 2612 26, 9630 (2015).

  31. F. M. Mwema, E. T. Akinlabi, O. P. Oladijo, O. S. Fatoba, S. A. Akinlabi, and S. Tălu, in Modern Manufacturing Processes, edited by K. Kumar and J. P. Davim, Woodhead Publishing, UK, pp. 13–39 (2020).

  32. P. Soille and L. M. Vincent, Vis. Commun. Image Process.’90 Fifth a Ser. 1360, 240 (1990).

  33. N. Otsu, IEEE Trans. Syst. Man. Cybern. 9, 62. (1979).

    Article  Google Scholar 

  34. L. Vincent, L. Vincent, and P. Soille, IEEE Trans. Pattern Anal. Mach. Intell. 13, 583. (1991).

    Article  Google Scholar 

Download references

Acknowledgements

The Ministry of Higher Education Malaysia supported this research through University Malaysia Pahang, Pekan, Pahang, Malaysia under research grant number FRGS/1/2019/TK03/UMP/02/30 and supported by DRS from IPS, UMP.

Author information

Authors and Affiliations

Authors

Contributions

Irshad Ahamad Khilji & Sunil Pathak: conceptualization, investigation. Siti Nadiah Binte Mohd Saffe & Sunil Pathak: methodology, supervision. Sunil Pathak & Venugopal Reddy: reviewing and editing, validation. Ştefan Ţălu: investigation, reviewing, and editing. Slawomir Kulesza: validation, investigation. Miroslaw Bramowicz: image processing, fractal analysis, validation.

Corresponding author

Correspondence to Sunil Pathak.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest in publishing these results.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 528 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khilji, I.A., Saffe, S.N.B.M., Pathak, S. et al. Titanium Alloy Particles Formation in Electrical Discharge Machining and Fractal Analysis. JOM 74, 448–455 (2022). https://doi.org/10.1007/s11837-021-05090-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-05090-2

Navigation