Skip to main content

Advertisement

Log in

Yeast-Derived Carbon Nanotube-Coated Separator for High Performance Lithium-Sulfur Batteries

  • Nanomaterials and Composites for Energy Conversion and Storage
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Lithium-sulfur (Li-S) battery is an appealing energy storage technology because of its superior theoretical energy density, natural friendliness and low cost over Li-ion battery. However, Li-S batteries often suffer from fast capacity decay, low energy density and short lifespan due to the shuttle effect from polysulfides. Hybridizing sulfur with carbonaceous materials has been demonstrated effective in solving these challenges and thus improving Li-S battery performance. In this work, yeast as a low-cost, natural and renewable catalyst was used to grow carbon nanotubes (CNTs), which were then coated on the separator in a Li-S battery to suppress the shuttle effect of polysulfides. The Li-S cell with the CNT-coated separator exhibited significantly improved performance at high current density with an initial high specific capacity of 980 mA h g−1 and a well-retained specific capacity of ~ 450 mA h g−1 after 850 cycles at a high current density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Armand and J.M. Tarascon, Nature 451, 652 (2008).

    Article  Google Scholar 

  2. N. Armaroli and V. Balzani, Energy Environ. Sci. 4, 3193 (2011).

    Article  Google Scholar 

  3. B. Dunn, H. Kamath, and J.M. Tarascon, Science 334, 928 (2011).

    Article  Google Scholar 

  4. A. Aricò, P. Bruce, B. Scrosati, J.M. Tarascon, and W. van Schalkwijk, Nat. Mater. 4, 366–377 (2005).

    Article  Google Scholar 

  5. J.B. Goodenough and Y. Kim, Chem. Mater. 22, 587 (2010).

    Article  Google Scholar 

  6. X. Lou, C. Lin, Q. Luo, J. Zhao, B. Wang, J. Li, Q. Shao, X. Guo, N. Wang, and Z. Guo, Chem. Electron. Chem. 4, 3171 (2017).

    Google Scholar 

  7. Y.X. Yin, S. Xin, Y.G. Guo, and L.J. Wan, Angew. Chem. Int. Ed. 52, 13186 (2013).

    Article  Google Scholar 

  8. P.G. Bruce, S.A. Freunberger, L.J. Hardwick, and J.M. Tarascon, Nat. Mater. 11, 19 (2012).

    Article  Google Scholar 

  9. X. Ji, K.T. Lee, and L.F. Nazar, Nat. Mater. 8, 500 (2009).

    Article  Google Scholar 

  10. Y. Zhang, Z. Gao, N. Song, J. He, and X. Li, Mater. Today Energy 9, 319 (2018).

    Article  Google Scholar 

  11. J. Wang, S.Y. Chew, Z.W. Zhao, S. Ashraf, D. Wexler, J. Chen, S.H. Ng, S.L. Chou, and H.K. Liu, Carbon 46, 229 (2008).

    Article  Google Scholar 

  12. J. Guo, Y. Xu, and C. Wang, Nano Lett. 11, 4288 (2011).

    Article  Google Scholar 

  13. M.Q. Zhao, X.F. Liu, Q. Zhang, G.L. Tian, J.Q. Huang, W. Zhu, and F. Wei, ACS Nano 6, 10759 (2012).

    Article  Google Scholar 

  14. H.J. Peng, J.Q. Huang, M.Q. Zhao, Q. Zhang, X.B. Cheng, X.Y. Liu, W.Z. Qian, and F. Wei, Adv. Funct. Mater. 24, 2772 (2014).

    Article  Google Scholar 

  15. S. Iijima, Nature 354, 56 (1991).

    Article  Google Scholar 

  16. B. Peng, M. Locascio, P. Zapol, S. Li, S.L. Mielke, G.C. Schatz, and H.D. Espinosa, Nat. Nanotechnol. 3, 626 (2008).

    Article  Google Scholar 

  17. B.Q. Wei, R. Vajtai, and P.M. Ajayan, Appl. Phys. Lett. 79, 1172 (2001).

    Article  Google Scholar 

  18. E. Pop, D. Mann, Q. Wang, K. Goodson, and H. Dai, Nano Lett. 6, 96 (2006).

    Article  Google Scholar 

  19. M. Miao, Carbon 49, 3755 (2011).

    Article  Google Scholar 

  20. Q. Zhang, J.Q. Huang, W.Z. Qian, Y.Y. Zhang, and F. Wei, Small 9, 1237 (2013).

    Article  Google Scholar 

  21. L. Wen, F. Li, and H.M. Cheng, Adv. Mater. 28, 4306 (2016).

    Article  Google Scholar 

  22. S.H. Chung and A. Manthiram, J. Phys. Chem. Lett. 5, 1978 (2014).

    Article  Google Scholar 

  23. L. Kong, H.J. Peng, J.Q. Huang, W. Zhu, G. Zhang, Z.W. Zhang, P.Y. Zhai, P. Sun, J. Xie, and Q. Zhang, Energy Storage Mater. 8, 153 (2017).

    Article  Google Scholar 

  24. Y.C. Jeong, J.H. Kim, S.H. Kwon, J.Y. Oh, J. Park, Y. Jung, S.G. Lee, S.J. Yang, and C.R. Park, J. Mater. Chem. A 5, 23909 (2017).

    Article  Google Scholar 

  25. H. Yao, K. Yan, W. Li, G. Zheng, D. Kong, Z.W. Seh, V.K. Narasimhan, Z. Liang, and Y. Cui, Energy Environ. Sci. 7, 3381 (2014).

    Article  Google Scholar 

  26. S.H. Chung and A. Manthiram, Adv. Funct. Mater. 24, 5299 (2014).

    Article  Google Scholar 

  27. G. Zhou, L. Li, D.W. Wang, X.Y. Shan, S. Pei, F. Li, and H.M. Cheng, Adv. Mater. 27, 641 (2015).

    Article  Google Scholar 

  28. L. Qie and A. Manthiram, Adv. Mater. 27, 1694 (2015).

    Article  Google Scholar 

  29. Q. Pang, J. Tang, H. Huang, X. Liang, C. Hart, K.C. Tam, and L.F. Nazar, Adv. Mater. 27, 6021 (2015).

    Article  Google Scholar 

  30. L. Lin, F. Pei, J. Peng, A. Fu, J. Cui, X. Fang, and N. Zheng, Nano Energy 54, 50 (2018).

    Article  Google Scholar 

  31. M.F.L. De. Volder, S.H. Tawfick, R.H. Baughman, and A.J. Hart, Science 339, 535 (2013).

    Article  Google Scholar 

  32. Y.P. Sun, K. Fu, Y. Lin, and W. Huang, Acc. Chem. Res. 35, 1096 (2002).

    Article  Google Scholar 

  33. J.M. Bonard, H. Kind, T. Stöckli, and L.O. Nilsson, Solid-State Electron. 45, 893 (2001).

    Article  Google Scholar 

  34. S. Park, M. Vosguerichian, and Z. Bao, Nanoscale 5, 1727 (2013).

    Article  Google Scholar 

  35. Y. Ando, X. Zhao, T. Sugai, and M. Kumar, Mater. Today 7, 22 (2004).

    Article  Google Scholar 

  36. C. Journet and P. Bernier, Appl. Phys. A Mater. Sci. Process 67, 1 (1998).

    Article  Google Scholar 

  37. A. Szabó, C. Perri, A. Csató, G. Giordano, D. Vuono, and J.B. Nagy, Materials 3, 3092 (2010).

    Article  Google Scholar 

  38. M. Kumar and Y. Ando, J. Nanosci. Nanotechnol. 10, 3739 (2010).

    Article  Google Scholar 

  39. M. José-Yacamán, M. Miki-Yoshida, L. Rendon, and J.G. Santiesteban, Appl. Phys. Lett. 62, 657 (1993).

    Article  Google Scholar 

  40. Y. Homma, T. Yamashita, P. Finnie, M. Tomita, and T. Ogino, Jpn. J. Appl. Phys. 41, L89 (2002).

    Article  Google Scholar 

  41. A. Oberlin, M. Endo, and T. Koyama, J. Cryst. Growth 32, 335 (1976).

    Article  Google Scholar 

  42. J.W. Seo, A. Magrez, M. Milas, K. Lee, V. Lukovac, and L. Forro, J. Phys. D. Appl. Phys. 40, R109 (2007).

    Article  Google Scholar 

  43. Y. Wang, M.J. Kim, H. Shan, C. Kittrell, H. Fan, L.M. Ericson, W.F. Hwang, S. Arepalli, R.H. Hauge, and R.E. Smalley, Nano Lett. 5, 997 (2005).

    Article  Google Scholar 

  44. S. Musso, M. Zanetti, M. Giorcelli, A. Tagliaferro, and L. Costa, J. Nanosci. Nanotechnol. 9, 3593 (2009).

    Article  Google Scholar 

  45. M. Kumar, T. Okazaki, M. Hiramatsu, and Y. Ando, Carbon 45, 1899 (2007).

    Article  Google Scholar 

  46. Z. Gao, Y. Zhang, N. Song, and X. Li, Mater. Res. Lett. 5, 69 (2017).

    Article  Google Scholar 

  47. Z. Gao, Y. Zhang, N. Song, and X. Li, Electrochim. Acta 246, 507 (2017).

    Article  Google Scholar 

  48. Y. Zhang, Z. Gao, and X. Li, Small 13, 1701927 (2017).

    Article  Google Scholar 

  49. Y. Zhang, F.M. Heim, N. Song, J.L. Bartlett, and X. Li, ACS Energy Lett. 2, 2696 (2017).

    Article  Google Scholar 

  50. Z. Gao, N. Song, Y. Zhang, Y. Schwab, J. He, and X. Li, ACS Sustain. Chem. Eng. 6, 11386 (2018).

    Article  Google Scholar 

  51. Y. Xie, L. Fang, H. Cheng, C. Hu, H. Zhao, J. Xu, J. Fang, X. Lu, and J. Zhang, J. Mater. Chem. A 4, 15612 (2016).

    Article  Google Scholar 

  52. G. Feng, X. Liu, Z. Wu, Y. Chen, Z. Yang, C. Wu, X. Guo, B. Zhong, W. Xiang, and J. Li, J. Alloy. Compd. 817, 152723 (2020).

    Article  Google Scholar 

  53. S. Soares, G. Camino, and S. Levchik, Polym. Degrad. Stabil. 49, 275 (1995).

    Article  Google Scholar 

  54. S. Costa, E. Borowiak-Palen, M. Kruszynska, A. Bachmatiuk, and R.J. Kalenczuk, Mater. Sci Pol. 26, 433 (2008).

    Google Scholar 

  55. X. Xu, C. Yang, Z. Yang, K. Yang, and S. Huang, Carbon 80, 490 (2014).

    Article  Google Scholar 

  56. X. Qi, J. Xu, Q. Hu, Y. Deng, R. Xie, Y. Jiang, W. Zhong, and Y. Du, Sci. Rep. 6, 28310 (2016).

    Article  Google Scholar 

  57. Z.W. Seh, Q. Zhang, W. Li, G. Zheng, H. Yao, and Y. Cui, Chem. Sci. 4, 3673 (2013).

    Article  Google Scholar 

  58. X. Qiu, Q. Hua, L. Zheng, and Z. Dai, RSC Adv. 10, 5283 (2020).

    Article  Google Scholar 

  59. N. Song, Z. Gao, Y. Zhang, and X. Li, Nano Energy 58, 30 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this study was provided by the US National Science Foundation (CMMI-1728042). The authors thank the staff members at the University of Virginia NMCF for electron microscopy technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Li.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2331 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Gao, Z. & Li, X. Yeast-Derived Carbon Nanotube-Coated Separator for High Performance Lithium-Sulfur Batteries. JOM 73, 2516–2524 (2021). https://doi.org/10.1007/s11837-021-04752-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04752-5

Navigation