Skip to main content
Log in

Heat Transfer Evolution Process in Hearth Based on Blast Furnace Dissection

  • Heat Transfer Utilization in Pyrometallurgy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The abnormal erosion of hearth refractories is widely recognized as the main limiting factor for a long blast furnace life. In this paper, the embrittlement phenomenon of the hearth lining found in the blast furnace dissection has been described. Combining the migration figure of the thermocouple temperature in the blast furnace hearth, the evolution process of the carbon brick erosion and the heat transfer were analyzed. The results show that the embrittlement layer contains a large amount of ZnO, which accounts for more than 40%, and the thermal conductivity of the embrittled carbon brick is about 4.9 W/(m K). Moreover, due to the detachment of the embrittlement layer, the erosion evolution process of the hearth carbon brick exists as a cyclically periodic rising phenomenon together with the thermocouple temperature. Thereafter, the residual thickness of the carbon bricks and the temperature of the thermocouples during the formation of the embrittlement layer and the protective layer were calculated quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T.J. Yang, J.L. Zhang, Z.J. Liu, and K.X. Jiao, Ironmaking 37, 1 (2018).

    Google Scholar 

  2. X.L. Wang, Metallurgy of iron and steel (Part I: ironmaking) (Beijing: Metallurgical Industry Press, 2019).

    Google Scholar 

  3. S.R. Zhang and Z.J. Yu, Abnormal conditions and accident treatments of blast furnace (Beijing: Metallurgical Industry Press, 2012).

    Google Scholar 

  4. X.Y. Fan, K.X. Jiao, J.L. Zhang, K.D. Wang, and Z.Y. Chang, ISIJ Int. 58, 1775 (2018).

    Article  Google Scholar 

  5. Z.J. Liu, J.L. Zhang, and T.J. Yang, ISIJ Int. 52, 1713 (2012).

    Article  Google Scholar 

  6. C. Zhou, G.W. Tang, J.C. Wang, D. Fu, T. Okosun, A. Silaen, and B. Wu, JOM. 68, 1353 (2016).

    Article  Google Scholar 

  7. K. Takatani, T. Inada, and K. Takata, ISIJ Int. 41, 1139 (2001).

    Article  Google Scholar 

  8. T. Inada, A. Kasai, K. Nakano, S. Komatsu, and A. Ogawa, ISIJ Int. 49, 470 (2009).

    Article  Google Scholar 

  9. V. Panjkovic, J.S. Truelove, and P. Zulli, Ironmak Steelmak 18, 390 (2013).

    Google Scholar 

  10. L. Shao and H. Saxén, Steel Res. Int. 83, 878 (2012).

    Article  Google Scholar 

  11. K.X. Jiao, J.L. Zhang, Z.J. Liu, F. Liu, and L.S. Liang, Int. J. Miner. Met. Mater. 23, 16 (2016).

    Article  Google Scholar 

  12. K.X. Jiao, J.L. Zhang, Z.J. Liu, S.B. Kuang, and Y.X. Liu, ISIJ Int. 57, 48 (2017).

    Article  Google Scholar 

  13. K.X. Jiao, J.L. Zhang, Z.J. Liu, C.L. Chen, and Y.X. Liu, ISIJ Int. 56, 1956 (2016).

    Article  Google Scholar 

  14. K.X. Jiao, J.L. Zhang, Z.J. Liu, M. Xu, and F. Liu, Int. J. Miner. Met. Mater. 22, 1017 (2015).

    Article  Google Scholar 

  15. K.X. Jiao, J.L. Zhang, Q.F. Hou, Z.J. Liu, and G.W. Wang, Steel Res. Int. 88, 1 (2017).

    Google Scholar 

  16. K.X. Jiao, X.Y. Fan, J.L. Zhang, K.D. Wang, and Y.A. Zhao, Ceramic Int. 44, 19981 (2018).

    Article  Google Scholar 

  17. L.S. Liang, Y.M. Chen, and G. Wei, China Metall. 6, 14 (2013).

    Google Scholar 

  18. R.L. Zhu, G.J. Sun, C.C. Lin, in AISTech Proceedings (2015) p. 298.

  19. S. Gupta, D. French, R. Sakurovs, M. Grigore, H. Sun, T. Cham, T. Hilding, M. Hallin, B. Hindblom, and V. Sahajwalla, Prog. Energy Combust. Sci. 34, 155 (2008).

    Article  Google Scholar 

  20. Z.Y. Chang, K.X. Jiao, and J.L. Zhang, Metall. Mater. Trans. B 49, 2956 (2018).

    Article  Google Scholar 

  21. K. Kazuberns, S. Gupta, M. Grigore, D. French, R. Sakurovs, and M. Hallin, Energy Fuels 22, 3407 (2008).

    Article  Google Scholar 

  22. K.X. Jiao, J.L. Zhang, Z.J. Liu, Z.Z. Liu, Y. Deng, and X.Y. Fan, Metall. Res. Technol. 115, 109 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science Foundation of China (51704019) and the Young Elite Scientists Sponsorship Program by CAST (2018QNRC001). We are very grateful to anonymous reviewers for their warm work and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Xin Jiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, KX., Wang, C., Zhang, JL. et al. Heat Transfer Evolution Process in Hearth Based on Blast Furnace Dissection. JOM 72, 1935–1942 (2020). https://doi.org/10.1007/s11837-020-04090-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04090-y

Navigation