Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of Electromagnetic Stirring on the Solidification Behavior of High-Magnetic-Induction Grain-Oriented Silicon Steel Continuous Casting Slab

  • 4 Accesses

Abstract

The solidification behaviors of high-magnetic-induction grain-oriented silicon steel slabs have been investigated during experiments in industrial strand electromagnetic stirring (S-EMS). The current intensities of S-EMS were 0, 120, 200, and 350 A, and the frequency was 5 Hz. The ratio of the equiaxed crystal was 14.95%, 15.64%, 45.22%, and 66.96%, respectively. Central porosity cannot be eliminated by increasing the current intensity. The number, size, and ratio of segregation spots were markedly reduced by minimizing the equiaxed crystal zone. Carbon in the 0 and 120 A slabs exhibited a lower degree of macrosegregation compared with the 200 and 350 A slabs. Controlling the cooling rate and increasing the total reduction are the directions to further improve solidification structures, defects, and carbon segregation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    M. Littman, J. Magn. Magn. Mater. 26, 1 (1982).

  2. 2.

    Z. Xia, Y. Kang, and Q. Wang, J. Magn. Magn. Mater. 23, 3229 (2008).

  3. 3.

    M.Q. Yan, H. Qian, P. Yan, H.J. Song, Y.Y. Shao, and W.M. Mao, Acta Metall. Sin. 48, 16 (2012).

  4. 4.

    Z. Liu, Z. Liu, J. Li, and Z. He, Acta Metall. Sin. 5, 33 (1992).

  5. 5.

    S. Choudhary, S. Ganguly, A. Sengupta, and V. Sharma, J. Mater. Process. Tech 243, 312 (2017).

  6. 6.

    Y. Tsuchida, I. Sugawara, S. Miyahara, T. Ishida, M. Ishikawa, and S. Matsumoto, Trans. Iron. Steel. Int. Japan. 22, B265 (1982).

  7. 7.

    M. Réger, B. Verő, Z. Csepeli, and Á. Szélig, Mater. Sci. Forum 508, 233 (2006).

  8. 8.

    H. Zhang, E. Wang, and G. Jia, J. He. Acta. Metall. Sin. 14, 227 (2001).

  9. 9.

    H.T. Liu, Z.Y. Liu, G.M. Cao, C.G. Li, and G.D. Wang, J. Magn. Magn. Mater. 323, 2648 (2011).

  10. 10.

    T. Itakura, T. Ishige, M. Nakada, H. Nakashima, and M. Tada, Steelmak. Confer. 77, 291 (1994).

  11. 11.

    F. Satou, H. Esaka, and K. Shinozuka, Tetsu. To. Hagane. J. Iron. Steel. Ins. Japan. 99, 108 (2013).

  12. 12.

    Y. Tsuchida, M. Nakada, U. Sugawara, S. Miyahara, K. Murakami, and S. Tokushige, Trans. Iron. Steel. Int. Japan. 24, 899 (1984).

  13. 13.

    Z. Xu, X. Wang, F. Huang, L. Zhou, W. Wang, and Y. Yin, J. U. Sci. Technol. Beijing. 36, 751 (2014).

  14. 14.

    H. Wu, N. Wei, Y. Bao, G. Wang, and C. Xiao, J. Liu. Int. J. Min. Met. Mater. 18, 159 (2011).

  15. 15.

    H. An, Y. Bao, M. Wang, and L. Zhao, Metal. Res. Technol. 114, 405 (2017).

  16. 16.

    H. Sun, L. Li, J. Wang, X. Cheng, and F. Zhou, Ironmak. Steelmak. 45, 708 (2017).

  17. 17.

    B. Lu, F. Qi, and W. Shen, J. Liu. Spec. Steel. 38, 40 (2017).

  18. 18.

    E. Wang, E. Jiang, G. Zhan, and A. Deng, J. He. Mater. Sci. Forum. 706–709, 2480 (2012).

  19. 19.

    Y. Yu and B. Li, Acta Metall. Sin. 42, 540 (2006).

  20. 20.

    K. Spitzer, Prog. Cryst. Growth Charact. Mater. 38, 59 (1999).

  21. 21.

    J. Pilling and A. Hellawell, Metall. Mater. Trans. 27A, 229 (1996).

  22. 22.

    T. Cool and P. Voorhees, Acta Mater. 127, 359 (2017).

  23. 23.

    X. Wang, S. Wang, L. Zhang, S. Sridhar, A. Conejo, and X. Liu, Metall. Mater. Trans. A 47, 5496 (2016).

  24. 24.

    L. Lu, K. Nogita, S. Mcdonald, and A. Dahle, JOM 56, 52 (2004).

  25. 25.

    T. Brune, K. Kortzak, D. Senk, N. Reuther, and M. Schäperkötter, Steel Res. Int. 86, 33 (2015).

  26. 26.

    S. Kunstreich, Metall. Res. Technol. 100, 1043 (2003).

Download references

Acknowledgements

The authors are grateful for support from the National Science Foundation China (Grant No. 51574019), Open Project of State Key Laboratory of Advanced Special Steel, Shanghai University (SKLASS 2017-12), China, and Shougang Qian’an Iron and Steel Company.

Author information

Correspondence to Min Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wang, X., Bao, Y. et al. Effect of Electromagnetic Stirring on the Solidification Behavior of High-Magnetic-Induction Grain-Oriented Silicon Steel Continuous Casting Slab. JOM (2020). https://doi.org/10.1007/s11837-020-04058-y

Download citation