Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Multilayer Porous Three-Dimensional PM Composite Unbonded Paper Fiber Improves Electrochemical Properties of Nano-Si

  • 4 Accesses

Abstract

To improve the electrochemical performance of Si-based lithium ion batteries, a novel multilayer microporous three-dimensional porous carbon nanosheet (PC)/multi-walled carbon nanotube (MWCNT) (PM) composite unbonded paper fiber current collector was used to replace copper foil. PM combines the advantages of PC and MWCNTs. MWCNTs provide a good conductive path that promotes electron transport and maintains structural integrity. The three-dimensional interconnected structure of one-dimensional MWCNTs combined with two-dimensional porous PC facilitates rapid electrical/ion transport and good electrolyte penetration. Moreover, PM has a tiny nanostructure. PM is filled, adsorbed and aggregated in the surface of the paper fiber and the gaps between the paper fiber and the paper fiber, which acts to connect the paper fibers and the carrier. The paper fiber has a natural non-agglomerate advantage so that PM/paper fiber (PMP) shows excellent physical properties. The initial coulombic efficiency of the Si-PMP electrode reached 69.3% and maintained a specific discharge capacity of 755 mAh/g at a current density of 0.08 A/g with a capacity retention ratio of 65.2% after 200 cycles.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    B. Scrosati, J. Hassoun, and Y.K. Sun, Energy Environ. Sci. 4, 3287 (2011).

  2. 2.

    R. Marom, S.F. Amalraj, N. Leifer, D. Jacob, and D. Aurbach, J. Mater. Chem. 21, 9938 (2011).

  3. 3.

    Z.L. Xu, J.K. Kim, and K. Kang, Nano Today 19, 84 (2018).

  4. 4.

    J. Wang, H. Tang, L. Zhang, H. Ren, R. Yu, Q. Jin, J. Qi, D. Mao, M. Yang, Y. Wang, P. Liu, Y. Zhang, Y. Wen, L. Gu, G. Ma, Z. Su, Z. Tang, H. Zhao, and D. Wang, Nat. Energy 1, 16050 (2016).

  5. 5.

    H. Wu, G. Yu, L. Pan, N. Liu, M.T. McDowell, Z. Bao, and Y. Cui, Nat. Commun. 4, 1943 (2013).

  6. 6.

    V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, and S. Seal, Prog. Mater. Sci. 56, 1178 (2011).

  7. 7.

    E. Yoo, J. Kim, E. Hosono, H.S. Zhou, T. Kudo, and I. Honma, Nano Lett. 8, 2277 (2008).

  8. 8.

    Z.S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, and H.M. Cheng, ACS Nano 4, 3187 (2010).

  9. 9.

    N. Nitta, F. Wu, J.T. Lee, and G. Yushin, Mater. Today 18, 252 (2015).

  10. 10.

    M. Yoshio, R.J. Rodd, and A. Kozawa, Lithium-Ion Batteries Science and Technologies (New York: Springer, 2009), p. 11.

  11. 11.

    V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Energy Environ. Sci. 4, 3243 (2011).

  12. 12.

    J.B. Goodenough and Y. Kim, Chem. Mater. 22, 587 (2010).

  13. 13.

    K.S. Eom, J.T. Lee, M. Oschatz, F. Wu, S. Kaskel, G. Yushin, and T.F. Fuller, Nat. Commun. 8, 13888 (2017).

  14. 14.

    Y. Zhou, X. Jiang, L. Chen, J. Yue, H. Xu, J. Yang, and Y. Qian, Electrochim. Acta 127, 252 (2014).

  15. 15.

    D. Hong, J. Ryu, S. Shin, and S. Park, J. Mater. Chem. A 5, 2095 (2017).

  16. 16.

    L.S. Jiao, J.Y. Liu, H.Y. Li, T.S. Wu, F. Li, H.Y. Wang, and L. Niu, J. Power Sources 315, 9 (2016).

  17. 17.

    X. Li, P. Yan, B. Warey, W. Luo, X. Ji, C. Wang, J. Liu, and J.G. Zhang, Nano Energy 20, 68 (2016).

  18. 18.

    M.V. Shelke, H. Gullapalli, K. Kalaga, M.T.F. Rodrigues, R.R. Devarapalli, R. Vajtai, and P.M. Ajayan, Adv. Mater. Interfaces 4, 1601043 (2017).

  19. 19.

    T. Wada, J. Yamada, and H. Kato, J. Power Sources 306, 8 (2016).

  20. 20.

    Y.C. Zhang, Y. You, S. Xin, Y.X. Yin, J. Zhang, P. Wang, X. Zheng, F.F. Cao, and Y.G. Guo, Nano Energy 25, 120 (2016).

  21. 21.

    W. Ren, Y. Wang, Q. Tan, Z. Zhong, and F. Su, J. Power Sources 332, 88 (2016).

  22. 22.

    M.K. Jangid, F.J. Sonia, R. Kali, B. Ananthoju, and A. Mukhopadhyay, Carbon 111, 602 (2017).

  23. 23.

    Y.M. Kim, J. Ahn, S.H. Yu, D.Y. Chung, K.J. Lee, J.K. Lee, and Y.E. Sung, Electrochim. Acta 151, 256 (2015).

  24. 24.

    T. Wang, J. Zhu, Y. Chen, H. Yang, Y. Qin, F. Li, Q. Cheng, X. Yu, Z. Xu, and B. Lu, J. Mater. Chem. A 5, 4809 (2017).

  25. 25.

    H.C. Shim, I. Kim, C.S. Woo, H.J. Lee, and S. Hyun, Nanoscale 9, 4713 (2017).

  26. 26.

    W. Sun, L. Wan, X. Li, X. Zhao, and X. Yan, J. Mater. Chem. A 4, 10948 (2016).

  27. 27.

    J. Xie, L. Tong, L. Su, Y. Xu, L. Wang, and Y. Wang, J. Power Sources 342, 529 (2017).

  28. 28.

    Z.L. Xu, X. Liu, Y. Luo, L. Zhou, and J.K. Kim, Prog. Mater. Sci. 90, 1 (2017).

  29. 29.

    M.M.J. Treacy, T.W. Ebbesen, and J.M. Gibson, Nature 381, 678 (1996).

  30. 30.

    E.W. Wong, P.E. Sheehan, and C.M. Lieber, Science 26, 1971 (1997).

  31. 31.

    A. Peigney, Ch Laurent, E. Flahaut, R.R. Bacsa, and A. Rousset, Carbon 39, 507 (2001).

  32. 32.

    K. Wang, X.M. He, L. Wang, J.G. Ren, C.Y. Jiang, and C.R. Wan, Solid State Ion. 178, 115 (2007).

  33. 33.

    Wu Yang, Wang Yang, Ailing Song, Gang Sun, and Guangjie Shao, Nanoscale 10, 816 (2018).

  34. 34.

    D.W. Xu, S. Xin, Y. You, Y. Li, H.P. Cong, and S.H. Yu, ChemNanoMat 2, 712 (2016).

  35. 35.

    C. Luo, S. Niu, G. Zhou, W. Lv, B. Li, F. Kang, and Q. Yang, Chem. Commun. 52, 121433 (2016).

  36. 36.

    J. Guo, Y. Xu, and C. Wang, Nano Lett. 11, 4288 (2011).

  37. 37.

    Y.L. Kim, Y.K. Sun, and S.M. Lee, Electrochim. Acta 53, 4500 (2008).

  38. 38.

    L. Hu, J.W. Choi, Y. Yang, S. Jeong, F. La Mantia, L.-F. Cui, and Y. Cui, PNAS 106, 21490 (2009).

Download references

Acknowledgements

This study was supported by Jiangxi Scientific Fund (20142BBE50071) and Jiangxi Education Fund (KJLD13006).

Author information

Correspondence to Xiaogang Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Sun, X., Wei, C. et al. Multilayer Porous Three-Dimensional PM Composite Unbonded Paper Fiber Improves Electrochemical Properties of Nano-Si. JOM (2020). https://doi.org/10.1007/s11837-020-04055-1

Download citation