Skip to main content
Log in

Highly Efficient Beneficiation of Low-Grade Iron Ore via Ore–Coal Composite-Fed Rotary Kiln Reduction: Pilot-Scale Study

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Direct reduction of low-grade iron ore pelleted with coal was investigated using a pilot-scale rotary kiln. The evolution of the iron minerals, the strength of the pellets, and the emission characteristics were measured. The results showed that the rotary kiln could be divided into three major functional zones: reduction of hematite to wüstite occurred at 1023–1163 K; wüstite transformed to fine metallic iron particles at 1163–1318 K; and metallic iron particles aggregated within 6.5 m of the outlet. The product had a metallization ratio of 92%. Pellet strength was maintained at 30–45 N within the first zone and no disintegration occurred. Aggregation of metallic iron particles within the final zone improved the strength to 465 N. The reduced sample was treated by grinding followed by magnetic separation. Of the total iron in the ore, 85.61% was recovered as iron powder (grade: 92.0 mass%). Use of this process could reduce CO2 emissions by approximately 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y.S. Sun, Q. Zhang, Y.X. Han, P. Gao, and G.F. Li, JOM 70, 144 (2018).

    Article  Google Scholar 

  2. V. Rayapudi and N. Dhawan, Mater. Today: Pro. 5, 17035 (2018).

    Google Scholar 

  3. G.H. Li, S.H. Zhang, M.J. Rao, Y.B. Zhang, and T. Jiang, Int. J. Miner. Process. 124, 26 (2013).

    Article  Google Scholar 

  4. C.C. Yang, D.Q. Zhu, J. Pan, and L.M. Lu, JOM 69, 1663 (2017).

    Article  Google Scholar 

  5. D.C. Fan, N. Wen, J.Y. Wang, and K. Wang, J. Wuhan Univ. Technol. Mater. Sci. Ed. 32, 508 (2017).

    Article  Google Scholar 

  6. A.S.S. Ahmed, M.M. Eltahir, and M.A. Abdel-Zaher, Int. J. Miner. Process. 122, 59 (2013).

    Article  Google Scholar 

  7. B. Kar, H. Sahoo, S.S. Rath, and B. Das, Miner. Eng. 49, 1 (2013).

    Article  Google Scholar 

  8. S.S. Rath, D.S. Rao, and B.K. Mishra, Int. J. Miner. Process. 157, 216 (2013).

    Article  Google Scholar 

  9. S.S. Rath, H. Sahoo, and B. Das, Int. J. Miner. Metall. Mater. 20, 605 (2013).

    Article  Google Scholar 

  10. W. Yu, T.C. Sun, and Q. Cui, Int. J. Miner. Process. 133, 119 (2014).

    Article  Google Scholar 

  11. W. Yu, T.C. Sun, and T.Y. Hu, ISIJ Int. 55, 329 (2015).

    Article  Google Scholar 

  12. Y.S. Sun, Y.X. Han, P. Gao, Z.H. Wang, and D.Z. Ren, Int. J. Miner. Metall. Mater. 20, 411 (2013).

    Article  Google Scholar 

  13. Y.S. Sun, Y.X. Han, P. Gao, and D.Z. Ren, Int. J. Miner. Metall. Mater. 21, 331 (2014).

    Article  Google Scholar 

  14. R.Z.A. Rashid, S. Mohd, A. Hamzah, H.Y. Mohd, A.A. Nurul, and P.H. Tomohiro, Renew. Energy 63, 617 (2014).

    Article  Google Scholar 

  15. A. Baikadi, V. Runkana, and S. Subramanian, IFAC-Pap. Online 49, 468 (2016).

    Article  Google Scholar 

  16. K. Miura, K. Miyabayashi, M. Kawanari, and R. Ashida, ISIJ Int. 41, 1234 (2001).

    Google Scholar 

  17. M. Nakano, M. Naito, K. Higuchi, and K. Morimoto, ISIJ Int. 44, 2079 (2004).

    Article  Google Scholar 

  18. Z.K. Liang, L.Y. Yi, Z.C. Huang, B.Y. Huang, and H.T. Han, ACS Sustain. Chem. Eng. 7, 18726 (2019).

    Article  Google Scholar 

  19. Z.C. Huang, R.H. Zhong, L.Y. Yi, T. Jiang, L.M. Wen, and Z.K. Liang, Metall. Mater. Trans. B 49, 411 (2018).

    Article  Google Scholar 

  20. Z.C. Huang, R.H. Zhong, J. Zou, and T. Jiang, in 6th International Symposium on High-Temperature Metallurgical Processing (Springer, 2015), pp. 185–192.

  21. Y. Man, J.X. Feng, Q. Ge, Y.M. Chen, and J.Z. Zhou, Powder Technol. 256, 361 (2014).

    Article  Google Scholar 

  22. H. Park and V. Sahajwalla, ISIJ Int. 54, 49 (2014).

    Article  Google Scholar 

  23. K. Sinha, T. Sharma, and D.D. Haladar, Int. Eng. Adv. Technol. 3, 30 (2014).

    Google Scholar 

  24. D.S. Chen, B. Song, L.N. Wang, T. Qi, Y. Wang, and W.J. Wang, Miner. Eng. 24, 864 (2011).

    Article  Google Scholar 

  25. L.Y. Yi, Z.C. Huang, T. Jiang, R.H. Zhong, and Z.K. Liang, Powder Technol. 317, 89 (2017).

    Article  Google Scholar 

  26. A.A. El-Geassy, M.I. Nasr, and E.A. Mousa, Steel Research Int. 81, 178 (2010).

    Article  Google Scholar 

  27. Z.C. Huang, L.Y. Yi, and T. Jiang, Powder Technol. 221, 284 (2012).

    Article  Google Scholar 

  28. Z.X. Zhang, X.J. Wu, T. Zhou, Y.S. Chen, N.P. Hou, and G.L. Piao, Proc. Combust. Inst. 33, 2853 (2011).

    Article  Google Scholar 

  29. T. Jiang, G.Q. He, M. Gan, G.H. Li, X.H. Fan, and L.S. Yuan, in Proceedings of the 5th International Congress on the Science and Technology of Ironmaking (Shanghai, 2009), pp. 292–297.

  30. Q. Zhong, Y.B. Yang, T. Jiang, Q. Li, and B. Xu, Powder Technol. 323, 195 (2018).

    Article  Google Scholar 

  31. Q.M. Meng, R.F. Wei, J.X. Wei, P. Wang, Z.F. Gao, Z.X. Di, and H.M. Long, ISIJ Int. 58, 439 (2017).

    Article  Google Scholar 

  32. A.P. Zambrano, C. Takano, M.B. Mourao, and S.Y. Tagusagawa, Mater. Res. 19, 1344 (2016).

    Article  Google Scholar 

  33. Q. Zhang, Y. Li, and G.Y. Jia, J. Clean. Prod. 172, 709 (2018).

    Article  Google Scholar 

  34. H. Suopajärvi, K. Umeki, E. Mousa, A. Hedayati, H. Romar, A. Kemppainen, C. Wang, A. Phounglamcheik, S. Toumikoski, N. Norberg, A. Andefors, M. Öhman, U. Lassi, and T. Fabritius, Appl. Energy 213, 384 (2018).

    Article  Google Scholar 

  35. A. Hasanbeigi, M. Arens, and L. Price, Renew. Sustain. Energy Rev. 33, 645 (2014).

    Article  Google Scholar 

  36. P. Mans, and D. Saayman, in The Fifth Ilafa Direct Reduction Conference (Saltillo, 1986), pp. 236–240.

  37. F. Wu, J. Deng, B. Mi, Z. Xiao, J. Kuang, H. Liu, M. Liang, B. Liu, and P. Yu, Powder Technol. 356, 170 (2019).

    Article  Google Scholar 

Download references

Acknowledgement

The authors express appreciation to the National Natural Science Foundation of China (Grant No. 51504230) for financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingyun Yi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, R., Yi, L., Huang, Z. et al. Highly Efficient Beneficiation of Low-Grade Iron Ore via Ore–Coal Composite-Fed Rotary Kiln Reduction: Pilot-Scale Study. JOM 72, 1680–1686 (2020). https://doi.org/10.1007/s11837-020-04053-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04053-3

Navigation