Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Visual Hydrogen Mapping Sensor for Noninvasive Monitoring of Bioresorbable Magnesium Implants In Vivo

  • 19 Accesses

Abstract

The biodegradation process of Mg alloys (LAZ611 and WKX41) has been monitored transdermally by using a visual H2 mapping sensor. The visual mapping sensor changes color from gray to dark blue upon exposure to H2 permeating through the skin generated by the degradation of Mg alloys implanted subcutaneously in mice in vivo. The visual H2 mapping sensor can provide three-dimensional H2 permeation maps using a simple procedure that is less time consuming compared with point measurements with an electrochemical H2 sensor. The results of this study demonstrate that the visual H2 mapping sensor has the capability to monitor the different biodegradation rates of Mg alloys in vivo. This detection method is simple, noninvasive, and low cost, does not use energetic radiation such as x-ray imaging, and moreover, requires no specialty training for operating personnel.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Biomaterials 27, 1728 (2006).

  2. 2.

    Y. Xin, T. Hu, and P.K. Chu, Acta Biomater. 7, 1452 (2011).

  3. 3.

    F. Witte, J. Fischer, J. Nellesen, H.A. Crostack, V. Kaese, A. Pisch, F. Beckmann, and H. Windhagen, Biomaterials 27, 1013 (2006).

  4. 4.

    F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth, and H. Windhagen, Biomaterials 26, 3557 (2005).

  5. 5.

    M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, and L.G. Johansson, Prog. Mater Sci. 89, 92 (2017).

  6. 6.

    A. Atrens, G.L. Song, M. Liu, Z.M. Shi, F.Y. Cao, and M.S. Dargusch, Adv. Eng. Mater. 17, 400 (2015).

  7. 7.

    H. Hermawan, Prog. Biomater. 7, 93 (2018).

  8. 8.

    P.R. Cha, H.S. Han, G.F. Yang, Y.C. Kim, K.H. Hong, S.C. Lee, J.Y. Jung, J.P. Ahn, Y.Y. Kim, S.Y. Cho, J.Y. Byun, K.S. Lee, S.J. Yang, and H.K. Seok, Sci. Rep. 3, 2367 (2013).

  9. 9.

    D. Zhao, T. Wang, X. Guo, J. Kuhlmann, A. Doepke, Z. Dong, V.N. Shanov, and W.R. Heineman, JOM-J. Min. Met. S. 68, 1204 (2016).

  10. 10.

    M.H. Kang, H. Lee, T.S. Jang, Y.J. Seong, H.E. Kim, Y.H. Koh, J. Song, and H.D. Jung, Acta Biomater. 84, 453 (2019).

  11. 11.

    H. Hornberger, S. Virtanen, and A.R. Boccaccini, Acta Biomater. 8, 2442 (2012).

  12. 12.

    Y. Yamasaki, Y. Yoshida, M. Okazaki, A. Shimazu, T. Kubo, Y. Akagawa, and T. Uchida, Biomaterials 24, 4913 (2003).

  13. 13.

    H. Zreiqat, C.R. Howlett, A. Zannettino, P. Evans, G. Schulze-Tanzil, C. Knabe, and M. Shakibaei, J. Biomed. Mater. Res. 62, 175 (2002).

  14. 14.

    Y. Yamasaki, Y. Yoshida, M. Okazaki, A. Shimazu, T. Uchida, T. Kubo, Y. Akagawa, Y. Hamada, J. Takahashi, and N. Matsuura, J. Biomed. Mater. Res. 62, 99 (2002).

  15. 15.

    J.H. Dirks, Kidney Int. 23, 771 (1983).

  16. 16.

    J. Vormann, Mol. Aspects Med. 24, 27 (2003).

  17. 17.

    G. Song, Adv. Eng. Mater. 7, 563 (2005).

  18. 18.

    L.A. Kaplan and A.J. Pesce, Clinical Chemistry: Theory, Analysis Correlation, Vol. 528 (Missouri: Morsby Inc., 1996).

  19. 19.

    J. Wu, D. Zhao, J.M. Ohodnicki, B. Lee, A. Roy, R. Yao, S. Chen, Z. Dong, W.R. Heineman, and P.N. Kumta, ACS Biomater. Sci. Eng. 4, 919 (2018).

  20. 20.

    D. Zhao, T. Wang, B. Hoagland, D. Benson, Z. Dong, S. Chen, D. Chou, D. Hong, J. Wu, P.N. Kumta, and W.R. Heineman, Acta Biomater. 45, 399 (2016).

  21. 21.

    D. Zhao, T. Wang, and W.R. Heineman, Trac-Trend Anal. Chem. 79, 269 (2016).

  22. 22.

    D. Zhao, T. Wang, J. Kuhlmann, Z. Dong, S. Chen, M. Joshi, P. Salunke, V.N. Shanov, D. Hong, P.N. Kumta, and W.R. Heineman, Acta Biomater. 36, 361 (2016).

  23. 23.

    D. Zhao, T. Wang, K. Nahan, X. Guo, Z. Zhang, Z. Dong, S. Chen, D.T. Chou, D. Hong, P.N. Kumta, and W.R. Heineman, Acta Biomater. 50, 556 (2017).

  24. 24.

    J. Kuhlmann, I. Bartsch, E. Willbold, S. Schuchardt, O. Holz, N. Hort, D. Hoche, W.R. Heineman, and F. Witte, Acta Biomater. 9, 8714 (2013).

  25. 25.

    D. Zhao, A. Brown, T. Wang, S. Yoshizawa, C. Sfeir, and W.R. Heineman, Acta Biomater. 73, 559 (2018).

  26. 26.

    UNISENSE, Hydrogen sensor user manual. (2014).

  27. 27.

    J.Z. Ou, J.L. Carnpbell, D. Yao, W. Wlodarski, and K. Kalantar-zadeh, J. Phys. Chem. C 115, 10757 (2011).

  28. 28.

    X. Hu, Y. Qian, Z. Song, J. Huang, R. Cao, and J. Xiao, Chem. Mater. 20, 1527 (2008).

  29. 29.

    D.A. Scherlis, Y.J. Lee, C. Rovira, S. Adams, R.M. Nieminen, P. Ordejon, and E. Canadell, Solid State Ionics 168, 291 (2004).

  30. 30.

    N. Nakashima-Kamimura, T. Mori, I. Ohsawa, S. Asoh, and S. Ohta, Cancer Chemoth. Pharm. 64, 753 (2009).

Download references

Acknowledgements

The authors thank the National Science Foundation for financial support (NSF ERC 0812348). P.N.K. also acknowledges support from the Edward R. Weidlein Chair Professorship Funds and the Center for Complex Engineered Multifunctional Materials (CCEMM), Swanson School of Engineering, University of Pittsburgh.

Author information

Correspondence to William R. Heineman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Wu, J., Chou, D. et al. Visual Hydrogen Mapping Sensor for Noninvasive Monitoring of Bioresorbable Magnesium Implants In Vivo. JOM (2020). https://doi.org/10.1007/s11837-020-04052-4

Download citation