Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Microstructure and Fracture Toughness of Compact TiC-Fe Gradient Coating Fabricated on Cast Iron Substrate by Two-Step In Situ Reaction

  • 14 Accesses

Abstract

A compact TiC-Fe gradient coating with high hardness and toughness has been fabricated on cast iron by two-step in situ reaction. The phase constitution of the coating was TiC and α-Fe. As the thickness of the coating was increased, the size (about 6.34 μm to 0.54 μm) and volume fraction of TiC particles gradually decreased. The formation mechanism of TiC was nucleation-growth of TiC grains (the first step of the in situ reaction) and the diffusion-type solid-phase transition via diffusion of carbon atoms into the titanium lattice (the second step of the in situ reaction). From the surface of the coating to the coating–substrate interface, the hardness and elastic modulus gradually decreased from 30.74 ± 0.61 GPa and 438.47 ± 4.82 GPa to 21.67 ± 1.03 GPa and 380.71 ± 5.86 GPa, respectively. Meanwhile, t he fracture toughness gradually increased from 3.21 MPa m1/2 to 6.75 MPa m1/2.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    J. Xiong, Z. Guo, M. Yang, W. Wan, and G. Dong, Ceram. Int. 39, 337 (2013).

  2. 2.

    M. Zhang, X. Liu, H. Shang, and J. Lin, Surf. Coat. Technol. 362, 381 (2019).

  3. 3.

    Q. Wang, F. Zhou, Q. Ma, M. Callisti, T. Polcar, and J. Yan, Appl. Surf. Sci. 443, 635 (2018).

  4. 4.

    R.O. Ritchie, Nat. Mater. 10, 817 (2011).

  5. 5.

    F. Bouville, E. Maire, S. Meille, B. Van de Moortele, A.J. Stevenson, and S. Deville, Nat. Mater. 13, 508 (2014).

  6. 6.

    X. Cai, Y. Xu, M. Liu, L. Zhong, and F. Bai, J. Alloys Compd. 712, 204 (2017).

  7. 7.

    K. Yalamanchili, I.C. Schramm, E. Jiménez-Piqué, L. Rogström, F. Mücklich, M. Odén, and N. Ghafoor, Acta Mater. 89, 22 (2015).

  8. 8.

    H. Ju and J. Xu, Appl. Surf. Sci. 355, 878 (2015).

  9. 9.

    S. Gupta, R. Sachan, A. Bhaumik, and J. Narayan, Nanotechnology 29, 45LT02 (2018).

  10. 10.

    J. Narayan, S. Gupta, A. Bhaumik, R. Sachan, F. Cellini, and E. Riedo, MRS Commun. 8, 428 (2018).

  11. 11.

    S. Gupta, R. Sachan, A. Bhaumik, P. Pant, and J. Narayan, MRS Commun. 8, 533 (2018).

  12. 12.

    N. Zhao, Y. Xu, X. Huang, L. Zhong, and J. Lu, Ceram. Int. 42, 18507 (2016).

  13. 13.

    H. Cetinel, B. Uyulgan, C. Tekmen, I. Ozdemir, and E. Celik, Surf. Coat. Technol. 174, 1089 (2003).

  14. 14.

    X. Jin, L. Wu, Y. Sun, and L. Guo, Mater. Sci. Eng., A 509, 63 (2009).

  15. 15.

    Y. Li, W. Zhang, J. Fei, D. Zhang, and W. Chen, Mater. Sci. Eng. A 391, 124 (2005).

  16. 16.

    M. Naebe and K. Shirvanimoghaddam, Appl. Mater. Today 5, 223 (2016).

  17. 17.

    N. Zhao, Y. Xu, L. Zhong, Y. Yan, K. Song, L. Shen, and V.E. Ovcharenko, Ceram. Int. 41, 12950 (2015).

  18. 18.

    M. Riabkina-Fishman, E. Rabkin, P. Levin, N. Frage, M.P. Dariel, A. Weisheit, R. Galun, and B.L. Mordike, Mater. Sci. Eng. A 302, 106 (2001).

  19. 19.

    M. Rezapoor, M. Razavi, M. Zakeri, M.R. Rahimipour, and L. Nikzad, Ceram. Int. 44, 22378 (2018).

  20. 20.

    Y. Shi, Y. Li, J. Liu, and Z. Yuan, Opt. Laser Technol. 99, 256 (2018).

  21. 21.

    D. Chen, D. Liu, Y. Liu, H. Wang, and Z. Huang, Surf. Coat. Technol. 239, 28 (2014).

  22. 22.

    A.S. Demirkıran and E. Avcı, Surf. Coat. Technol. 116, 292 (1999).

  23. 23.

    X. He, P. Song, X. Yu, C. Li, T. Huang, Y. Zhou, Q. Li, K. Lü, J. Lü, and J. Lu, Ceram. Int. 44, 20798 (2018).

  24. 24.

    M. Biesuz and V.M. Sglavo, Surf. Coat. Technol. 286, 319 (2016).

  25. 25.

    X. Fan, Z. Yang, C. Zhang, Y. Zhang, and H. Che, Surf. Coat. Technol. 205, 641 (2010).

  26. 26.

    Y. Ma, Y. Zhang, X. Yao, X. Zhang, X. Shu, and B. Tang, Surf. Coat. Technol. 226, 75 (2013).

  27. 27.

    H. Bai, L. Zhong, Z. Shang, Y. Xu, H. Wu, J. Bai, and Y. Ding, J. Alloys Compd. 771, 406 (2019).

  28. 28.

    D. Casellas, J. Caro, S. Molas, J.M. Prado, and I. Valls, Acta Mater. 55, 4277 (2007).

  29. 29.

    S. Fan, L. Zhong, Y. Xu, Y. Fu, and L. Wang, Adv. Eng. Mater. 17, 1562–1567 (2015).

  30. 30.

    L. Zhong, T. Wu, X. Zhang, S. Fan, L. Wang, and S. Chen, Mater. Sci. 21, 1392 (2015).

  31. 31.

    M. Zhang, Q. Hu, B. Huang, J. Li, and J. Li, Int. J. Refract. Met. Hard Mater. 29, 356 (2011).

  32. 32.

    J. Zhu, L. Zhong, Y. Xu, X. Cai, F. Bai, Y. Ding, Z. Lu, and H. Wu, Vacuum 155, 631 (2018).

  33. 33.

    H. Zhu, K. Dong, H. Wang, J. Huang, J. Li, and Z. Xie, Powder Technol. 246, 456 (2013).

  34. 34.

    A. Miriyev, M. Sinder, and N. Frage, Acta Mater. 75, 348 (2014).

  35. 35.

    X. Cai, L. Zhong, Y. Xu, Z. Lu, J. Li, J. Zhu, Y. Ding, and H. Yan, J. Alloys Compd. 747, 8 (2018).

  36. 36.

    I.W. Chen and X.H. Wang, Nature 404, 168 (2000).

  37. 37.

    S. Gupta, A. Moatti, A. Bhaumik, R. Sachan, and J. Narayan, Acta Mater. 166, 221 (2019).

  38. 38.

    J.A. Nicholas, W.G. Robin, and J.M. Ken, J. Mater. Sci. 42, 1884 (2007).

  39. 39.

    Z. Xie, M. Lugovy, N. Orlovskaya, T. Graule, J. Kuebler, M. Mueller, H. Gao, M. Radovic, and D.A. Cullen, J. Alloys Compd. 634, 168 (2015).

  40. 40.

    N. Zhao, Y. Zhao, X. Wang, K. Tang, Y. Xu, Y. Wei, F. Yan, W. Meng, L. Wu, and Y. Fei, Mater. Res. Express 5, 065 (2018).

  41. 41.

    R.O. Ritchie, Mater. Sci. Eng. A 103, 15 (1988).

  42. 42.

    A.G. Evans, J. Am. Ceram. Soc. 73, 187 (1990).

  43. 43.

    X. Cai, L. Zhong, Y. Xu, X. Li, and M. Liu, Surf. Coat. Technol. 357, 784 (2019).

Download references

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China (Grant No. 51704232), Key-point Research and Invention Program of Shaanxi Province (Grant No. 2017ZDXM-GY-032), International Research Center for Composite and Intelligent Manufacturing Technology (Grant No. 2018GHJD-17), and Innovation Capability Support Program of Shaanxi Province (Grant No. 2019-TD019).

Author information

Correspondence to Lisheng Zhong or Yunhua Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bai, H., Zhong, L., Shang, Z. et al. Microstructure and Fracture Toughness of Compact TiC-Fe Gradient Coating Fabricated on Cast Iron Substrate by Two-Step In Situ Reaction. JOM (2020). https://doi.org/10.1007/s11837-020-04047-1

Download citation