Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Hot Deformation Behavior and Microstructure Mechanisms of As-Cast 2219 Al Alloy

  • 27 Accesses

Abstract

The hot deformation behavior of ultralarge 2219 Al alloy has been investigated by isothermal deformation tests. The microstructure was characterized by transmission electron microscopy, scanning electron microscopy, and electron backscattered diffraction analysis. The results indicated that the true stress increased rapidly during the initial stage of deformation, then remained stable after reaching the peak stress. The peak stress increased with decreasing temperature and increasing strain rate. It was found that the main restoration mechanisms were dynamic recovery and partial continuous dynamic recrystallization (CDRX). The submicron θ or θ′ particles had a pinning effect on the dislocation motion and grain boundary sliding, and suppressed the CDRX process. In addition, the irregular millimeter- or micron-sized θ particles were broken up during deformation, effectively relaxing the stress concentration and inducing the DRX process.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    H. He, Y. Yi, S. Huang, and Y. Zhang, J. Mater. Sci. Technol. 35, 55 (2019).

  2. 2.

    L. Liu, Y. Wu, H. Gong, S. Liu, and A. Ahmad, Materials 11, 1443 (2018).

  3. 3.

    Y. Zhang, R. Li, X. Li, Y. Yang, P. Chen, F. Dong, and R. Peng, Metals 8, 814 (2018).

  4. 4.

    Y. Lin, W. Dong, M. Zhou, D. Wen, and D. Chen, Mater. Sci. Eng. A 718, 165 (2018).

  5. 5.

    Y. Zhu, Z. Yin, and J. Xu, J. Alloys Compd. 509, 6106 (2011).

  6. 6.

    T. Dursun and C. Soutis, Mater. Des. 56, 862 (2014).

  7. 7.

    J. Williams and E. Jr, Acta Mater. 51, 5775 (2003).

  8. 8.

    A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, and W. Miller, Mater. Sci. Eng. A 280, 102 (2000).

  9. 9.

    Y. Sun, Z. Cao, Z. Wan, L. Hu, W. Ye, N. Li, and C. Fan, J. Alloys Compd. 742, 356 (2018).

  10. 10.

    J. Zhang, B. Chen, and B. Zhang, Mater. Des. 34, 15 (2012).

  11. 11.

    Y. Yang, Z. Zhang, X. Li, Q. Wang, and Y. Zhang, Mater. Des. 51, 592 (2013).

  12. 12.

    A. Deshpande and K. Hsu, Mater. Sci. Eng. A 711, 62 (2017).

  13. 13.

    C. Huang, J. Deng, S. Wang, and L. Liu, Mater. Sci. Eng. A 699, 106 (2017).

  14. 14.

    F. Otto, J. Frenzel, and G. Eggeler, J. Alloys Compd. 509, 4073 (2011).

  15. 15.

    D. Wen, Y. Lin, H. Li, X. Chen, J. Deng, and L. Li, Mater. Sci. Eng. A 591, 183 (2014).

  16. 16.

    L. Cheng, H. Chang, B. Tang, H. Kou, and J. Li, J. Alloys Compd. 552, 363 (2013).

  17. 17.

    M. Meshkat and S. Serajzadeh, Adv. Manuf. Process. 28, 236 (2013).

  18. 18.

    C. Liang, H. Chang, B. Tang, H. Kou, and J. Li, Mater. Lett. 92, 430 (2013).

  19. 19.

    Y. Lin and M. Chen, J. Mater. Sci. 44, 835 (2009).

  20. 20.

    M. Myshlyaev, H. McQueen, A. Mwembela, and E. Konopleva, Mater. Sci. Eng. A 337, 121 (2002).

  21. 21.

    H. McQueen, M. Myshlyaev, and A. Mwembela, Can. Metall. Q. 42, 97 (2013).

  22. 22.

    Y. Lin, L. Li, and Y. Xia, Comput. Mater. Sci. 50, 2038 (2011).

  23. 23.

    H. Qi and Y. Li, Chin. J. Mech. Eng. 25, 853 (2012).

  24. 24.

    X. Yin, C. Park, Y. Li, W. Ye, Y. Zuo, S. Lee, J. Yeom, and X. Mi, J. Alloys Compd. 693, 426 (2017).

  25. 25.

    H. Zhang, K. Zhang, Z. Lu, C. Zhao, and X. Yang, Mater. Sci. Eng. A 604, 1 (2014).

  26. 26.

    Y. Liu, Y. Ning, Z. Yao, and H. Guo, J. Alloys Compd. 587, 183 (2014).

  27. 27.

    S. Zhou, K. Deng, J. Li, K. Nie, F. Xu, H. Zhou, and J. Fan, Mater. Des. 64, 177 (2014).

  28. 28.

    Y. Lin, X. Wu, X. Chen, J. Chen, D. Wen, J. Zhang, and L. Li, J. Alloys Compd. 640, 101 (2015).

  29. 29.

    H. Zhang, G. Chen, Q. Chen, F. Han, and Z. Zhao, J. Alloys Compd. 743, 283 (2018).

  30. 30.

    X. Li, J. Chen, and H. Zhang, Chin. J. Nonferr. Met. 18, 1769 (2008).

  31. 31.

    L. Jue, Y. Song, L. Hua, K. Zheng, and D. Dai, J. Alloys Compd. 767, 856 (2018).

  32. 32.

    D. Wen, Y. Lin, X. Li, and S. Singh, J. Alloys Compd. 764, 1008 (2018).

  33. 33.

    Y. Zhang, R. Li, P. Chen, X. Li, and Z. Liu, J. Alloys Compd. 808, 151634 (2019).

  34. 34.

    W. Jia, W. Zeng, J. Liu, Y. Zhou, and Q. Wang, Mater. Sci. Eng. A 530, 135 (2011).

  35. 35.

    H. Mirzadeh and M. Parsa, J. Alloys Compd. 614, 56 (2014).

  36. 36.

    A. Khamei and K. Dehghani, Mater. Chem. Phys. 123, 269 (2010).

  37. 37.

    X. Chen, D. Fu, T. Jie, and Z. Hui, J. Alloys Compd. 753, 566 (2018).

  38. 38.

    J. Gubicza, H. Nam, L. Balogh, J. Hellmig, V. Stolyarov, Y. Estrin, and T. Ungár, J. Alloys Compd. 378, 248 (2004).

  39. 39.

    B. Wu, M. Li, and D. Ma, Mater. Sci. Eng. A 542, 79 (2012).

  40. 40.

    N. Haghdadi, A. Hanzaki, and H. Abedi, Mater. Sci. Eng. A 535, 252 (2012).

  41. 41.

    M. Rokni, A. Hanzaki, A. Roostaei, and A. Abolhasani, Mater. Des. 32, 4955 (2011).

  42. 42.

    H. Zhang, N. Jin, and J. Chen, Trans. Nonferr. Met. Soc. 21, 437 (2011).

  43. 43.

    E. Elgallad, Z. Zhang, and X. Chen, Mater. Sci. Eng. A 625, 213 (2015).

  44. 44.

    D. Chen, Y. Lin, Y. Zhou, M. Chen, and D. Wen, J. Alloys Compd. 708, 938 (2017).

  45. 45.

    Q. Yang, Z. Deng, Z. Zhang, Q. Liu, Z. Jia, and G. Huang, Mater. Sci. Eng. A 662, 201 (2016).

  46. 46.

    K. Huang and R. Logé, Mater. Des. 111, 548 (2016).

  47. 47.

    Y. Chumlyakov, A. Korotaev, L. Bushnev, V. Esipenko, and Y. Veselov, Russ. Phys. J. 23, 537 (1980).

  48. 48.

    D. Li, Q. Guo, S. Guo, H. Peng, and Z. Wu, Mater. Des. 32, 696 (2011).

  49. 49.

    L. Liu, J. Chen, T. Fan, Z. Liu, Y. Zhang, and D. Yuan, Comput. Mater. Sci. 108, 136 (2015).

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (Nos. U1637601 and 51575539), Major Special Subsidy Projects for Science and Technology in Hunan Province (No. 2016GK1004), State Key Laboratory of High Performance Complex Manufacturing in Central South University (No. ZZYJKT2017-01), and Fundamental Research Funds for the Central Universities of Central South University (No. 2017zzts098). The authors are very grateful to Guo Wanfu for help with EBSD data analysis in HKL Channel5 software. We thank Tiffany Jain, M.S., from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Author information

Correspondence to Ripeng Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Jiang, R., Yang, Y. et al. Hot Deformation Behavior and Microstructure Mechanisms of As-Cast 2219 Al Alloy. JOM (2020). https://doi.org/10.1007/s11837-020-04042-6

Download citation