Advertisement

JOM

pp 1–6 | Cite as

Effect of Oxygen Flow Rate on the Particle Size Distribution and Morphology of the Ultrafine Rhenium Powders Prepared by CVD

  • Lejun Zhou
  • Zihang Pan
  • Zhihong Liu
  • Wanlin WangEmail author
Advances in Characterization of Powder Materials
  • 20 Downloads

Abstract

Ultrafine rhenium (Re) powders were prepared by a chemical vapor deposition method at different oxygen flow rates. Results show that the particle size ranges between 100 nm and 1300 nm and that the size distributions are close to the normal distribution. The d-values (d10, d50, and d90) of the ultrafine Re powders initially decrease and then increase with increasing oxygen flow rate from 20 to 80 mL/min. The morphology of the ultrafine Re powders is irregular polyhedron, and these powders grow through either coagulation or continuous deposition. In addition, the amount of residuals after the experiment reduces with the increase of oxygen flow rate from 20 to 40 mL/min. Above 40 mL/min, no appreciable residuals could be observed. X-ray diffraction analysis of the residuals indicates that the samples were low valence Re oxides of ReO3 and ReO2.

Notes

Acknowledgements

The work was supported by the National Natural Science Foundation of China (51874363, U1760202), Natural Science Foundation of Hunan Province (2019JJ40345), and Hunan Scientific Technology projects (2018RS3022, 2018WK2051).

References

  1. 1.
    E.N. Kablov, Y.A. Karpov, V.I. Titov, K.E. Karfidova, G.S. Kudryavtseva, and N.V. Gundobin, Inorg. Mater. 51, 1363 (2015).CrossRefGoogle Scholar
  2. 2.
    G.B. Lapp and D.I. Popova, Meas. Tech. 6, 917 (1963).CrossRefGoogle Scholar
  3. 3.
    M. Naruto, S. Agrawal, K. Toda, and S. Saito, Sci. Rep. 7, 3425 (2017).CrossRefGoogle Scholar
  4. 4.
    V.V. Prabhu, I.V. Fuke, S. Cho, and J. Singh, Rapid Prototyp. J. 11, 66 (2005).CrossRefGoogle Scholar
  5. 5.
    B.D. Bryskin and F.C. Danek, JOM 43, 24 (1991).CrossRefGoogle Scholar
  6. 6.
    M.L. Green and R.A. Levy, JOM 37, 63 (1985).CrossRefGoogle Scholar
  7. 7.
    F. Ogawa, C. Masuda, and H. Fujii, J. Mater. Sci. 53, 5036 (2018).CrossRefGoogle Scholar
  8. 8.
    S. Schiller, K. Goedicke, and C. Metzner, Mater. Sci. Eng. A 163, 149 (1993).Google Scholar
  9. 9.
    J. Singh and D.E. Wolfe, Adv. Manuf. Proc. 6, 915 (2003).CrossRefGoogle Scholar
  10. 10.
    S. Oh, D.A. Hite, K. Cicak, K.D. Osborn, R.W. Simmonds, R. McDermott, K.B. Cooper, M. Steffen, J.M. Martinis, and D.P. Pappas, Thin Solid Films 496, 389 (2006).CrossRefGoogle Scholar
  11. 11.
    K. Kim, J. Wang, and G. Welsch, Mater. Lett. 12, 43 (1991).CrossRefGoogle Scholar
  12. 12.
    V.I. Vybyvanets, A.V. Kosukhin, A.V. Cherenkov, and G.S. Shikin, IOP Conf. Ser. Mater. Sci. Eng. 112, 012040 (2016).CrossRefGoogle Scholar
  13. 13.
    L. Zhou, B. Meng, Z. Liu, Q. Li, and C. Zhang, Rare Metal Mater. Eng. 40, 1699 (2011).CrossRefGoogle Scholar
  14. 14.
    B. Meng, Z. Liu, L. Zhou, and C. Zhang, Trans. Nonferrous Met. Soc. China 23, 538 (2013).CrossRefGoogle Scholar
  15. 15.
    K.S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li, and C.P. Wong, J. Electron. Mater. 34, 168 (2005).CrossRefGoogle Scholar
  16. 16.
    L.V.M. Antony and R.G. Reddy, JOM 55, 14 (2003).CrossRefGoogle Scholar
  17. 17.
    P. Sun, Z.Z. Fang, Y. Zhang, and Y. Xia, JOM 69, 1853 (2017).CrossRefGoogle Scholar
  18. 18.
    J.W. Murray, M. Simonelli, A. Speidel, D.M. Grant, and A.T. Clare, Powder Technol. 350, 100 (2019).CrossRefGoogle Scholar
  19. 19.
    J.E. Battles, G.E. Gundersen, and R.K. Edwards, J. Phys. Chem. 72, 3963 (1968).CrossRefGoogle Scholar
  20. 20.
    N.R. Murphy, R.C. Gallagher, L. Sun, J.G. Jones, and J.T. Grant, Opt. Mater. 45, 191 (2015).CrossRefGoogle Scholar
  21. 21.
    M. Frenkel, G.J. Kabo, K.N. Marsh, G.N. Roganov, and R.C. Wilhoit, Thermodynamics of Organic Compounds in the Gas State (College Station: TRC Data Series, 1994).Google Scholar
  22. 22.
    E. Goudeli, Curr. Opin. Chem. Eng. 23, 155 (2019).CrossRefGoogle Scholar
  23. 23.
    M. Sipilä, N. Sarnela, T. Jokinen, H. Henschel, H. Junninen, J. Kontkanen, S. Richters, J. Kangasluoma, A. Franchin, O. Peräkylä, M.P. Rissanen, M. Ehn, H. Vehkamäki, T. Kurten, T. Berndt, T. Petäjä, D. Worsnop, D. Ceburnis, V.-M. Kerminen, M. Kulmala, and C. O’Dowd, Nature 537, 532 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2020

Authors and Affiliations

  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaChina
  2. 2.National Center for International Research of Clean MetallurgyCentral South UniversityChangshaChina

Personalised recommendations