pp 1–11 | Cite as

Helical and Bouligand Porous Scaffolds Fabricated by Dynamic Low Strength Magnetic Field Freeze Casting

  • Isaac Nelson
  • John Varga
  • Paul Wadsworth
  • Max Mroz
  • Jamie J. Kruzic
  • Owen T. Kingstedt
  • Steven E. NalewayEmail author
Advanced Manufacturing for Biomaterials and Biological Materials


Porous Fe3O4 scaffolds were fabricated while subject to a low (7.8 mT) magnetic field applied in helical and Bouligand motions using a custom-built tri-axial nested Helmholtz coils-based freeze-casting setup. This setup allowed for the control of a dynamic, uniform low-strength magnetic field to align particles during the freezing process, resulting in the majority of lamellar walls aligning within ± 30° of the magnetic field direction and a decrease in porosity by up to 42%. Similar to how helical and Bouligand structures in nature promote impact resistance, these magnetic field motions produced structures with improved high strain rate mechanical properties. Strain at failure was increased by up to 2 times as cracks deflected to match the applied angles of rotation of the magnetic field.



This work was financially supported in part by the National Science Foundation under Grant CMMI #1660979. The authors further acknowledge the Tyree x-ray CT Facility, a UNSW network lab funded by the UNSW Research Infrastructure Scheme, for the acquisition of the 3D µXCT images.

Supplementary material

11837_2019_4002_MOESM1_ESM.pdf (127 kb)
Supplementary material 1 (PDF 127 kb)


  1. 1.
    S.E. Naleway, M.M. Porter, J. McKittrick, and M.A. Meyers, Adv. Mater. 27, 5455–5476 (2015).CrossRefGoogle Scholar
  2. 2.
    M.E. Launey, M.J. Buehler, and R.O. Ritchie, Annu. Rev. Mater. Res. 40, 25–53 (2010).CrossRefGoogle Scholar
  3. 3.
    N. Suksangpanya, N.A. Yaraghi, D. Kisailus, and P. Zavattieri, J. Mech. Behav. Biomed. Mater. 76, 38–57 (2017).CrossRefGoogle Scholar
  4. 4.
    J.C. Weaver, G.W. Milliron, A. Miserez, K. Evans-Lutterodt, S. Herrera, I. Gallana, W.J. Mershon, B. Swanson, P. Zavattieri, E. DiMasi, and D. Kisailus, Science 336, 1275–1280 (2012).CrossRefGoogle Scholar
  5. 5.
    Y. Zhang, J. Roscow, M. Xie, and C. Bowen, J. Eur. Ceram. Soc. 38, 4203–4211 (2018).CrossRefGoogle Scholar
  6. 6.
    T.A. Ogden, M. Prisbrey, I. Nelson, B. Raeymaekers, and S.E. Naleway, Mater. Des. 164, 107561 (2018).CrossRefGoogle Scholar
  7. 7.
    M. Naviroj, P.W. Voorhees, and K.T. Faber, J. Mater. Res. 32, 3372 (2017).CrossRefGoogle Scholar
  8. 8.
    Y. Chino and D.C. Dunand, Acta Mater. 56, 105 (2008).CrossRefGoogle Scholar
  9. 9.
    H.D. Jung, S.W. Yook, T.S. Jang, Y. Li, H.E. Kim, and Y.H. Koh, Mater. Sci. Eng. C Mater. Biol. Appl. 33, 340–346 (2013).CrossRefGoogle Scholar
  10. 10.
    H.-D. Jung, S.-W. Yook, H.-E. Kim, and Y.-H. Koh, Mater. Lett. 63, 1545 (2009).CrossRefGoogle Scholar
  11. 11.
    H. Schoof, J. Apel, I. Heschel, and G. Rau, J. Biomed. Mater. Res. 58, 352–357 (2001).CrossRefGoogle Scholar
  12. 12.
    H.W. Kang, Y. Tabata, and Y. Ikada, Biomaterials 20, 1339–1344 (1999).CrossRefGoogle Scholar
  13. 13.
    T. Kohnke, T. Elder, H. Theliander, and A.J. Ragauskas, Carbohydr. Polym. 100, 24–30 (2014).CrossRefGoogle Scholar
  14. 14.
    S. Roy and A. Wanner, Compos. Sci. Technol. 68, 1136 (2008).CrossRefGoogle Scholar
  15. 15.
    P.M. Hunger, A.E. Donius, and U.G. Wegst, Acta Biomater. 9, 6338–6348 (2013).CrossRefGoogle Scholar
  16. 16.
    S.E. Naleway, K.C. Fickas, Y.N. Maker, M.A. Meyers, and J. McKittrick, Mater. Sci. Eng. C Mater. Biol. Appl. 61, 105–112 (2016).CrossRefGoogle Scholar
  17. 17.
    A. Shaga, P. Shen, C. Sun, and Q. Jiang, Mater. Sci. Eng. A 630, 78 (2015).CrossRefGoogle Scholar
  18. 18.
    M.M. Porter, L. Meraz, A. Calderon, H. Choi, A. Chouhan, L. Wang, M.A. Meyers, and J. McKittrick, Compos. Struct. 119, 174–184 (2015).CrossRefGoogle Scholar
  19. 19.
    M.M. Porter, P. Niksiar, J. McKittrick, and G. Franks, J. Am. Ceram. Soc. 99, 1917–1926 (2016).CrossRefGoogle Scholar
  20. 20.
    M.M. Porter, M. Yeh, J. Strawson, T. Goehring, S. Lujan, P. Siripasopsotorn, M.A. Meyers, and J. McKittrick, Mater. Sci. Eng. A 556, 741–750 (2012).CrossRefGoogle Scholar
  21. 21.
    I. Nelson, T.A. Ogden, S. Al Khateeb, J. Graser, T.D. Sparks, J.J. Abbott, and S.E. Naleway, Adv. Eng. Mater. 21, 1801092 (2019).CrossRefGoogle Scholar
  22. 22.
    I. Nelson, L. Gardner, K. Carlson, and S.E. Naleway, Acta Mater. 173, 106 (2019).CrossRefGoogle Scholar
  23. 23.
    J.P. Randall, M.A. Meador, and S.C. Jana, ACS Appl. Mater. Interfaces 3, 613–626 (2011).CrossRefGoogle Scholar
  24. 24.
    N.P. Padture, Nat. Mater. 15, 804–809 (2016).CrossRefGoogle Scholar
  25. 25.
    K.S. Katti, Colloids Surf. B Biointerfaces 39, 133–142 (2004).CrossRefGoogle Scholar
  26. 26.
    J. Currey, J. Theor. Biol. 231, 569–580 (2004).CrossRefGoogle Scholar
  27. 27.
    J.D. Currey, Calcif. Tissue Int. 36, 118–122 (1984).CrossRefGoogle Scholar
  28. 28.
    J.J. Abbott, Rev. Sci. Instrum. 86, 124902 (2015).CrossRefGoogle Scholar
  29. 29.
    A.M.A. Silva, E.H.M. Nunes, D.F. Souza, D.L. Martens, J.C. Diniz da Costa, M. Houmard, and W.L. Vasconcelos, Ceram. Int. 41, 10467–10475 (2015).CrossRefGoogle Scholar
  30. 30.
    D.F. Souza, E.H.M. Nunes, D.S. Pimenta, D.C.L. Vasconcelos, J.F. Nascimento, W. Grava, M. Houmard, and W.L. Vasconcelos, Mater. Charact. 96, 183–195 (2014).CrossRefGoogle Scholar
  31. 31.
    M.B. Frank, S.H. Siu, K. Karandikar, C.H. Liu, S.E. Naleway, M.M. Porter, O.A. Graeve, and J. McKittrick, J. Mech. Behav. Biomed. Mater. 76, 153–163 (2017).CrossRefGoogle Scholar
  32. 32.
    M.B. Frank, S.E. Naleway, T. Haroush, C.-H. Liu, S.H. Siu, J. Ng, I. Torres, A. Ismail, K. Karandikar, M.M. Porter, O.A. Graeve, and J. McKittrick, Mater. Sci. Eng. C 77, 484–492 (2017).CrossRefGoogle Scholar
  33. 33.
    N.A. Yaraghi, N. Guarin-Zapata, L.K. Grunenfelder, E. Hintsala, S. Bhowmick, J.M. Hiller, M. Betts, E.L. Principe, J.Y. Jung, L. Sheppard, R. Wuhrer, J. McKittrick, P.D. Zavattieri, and D. Kisailus, Adv. Mater. 28, 6835–6844 (2016).CrossRefGoogle Scholar
  34. 34.
    S. Deville, E. Saiz, and A.P. Tomsia, Acta Mater. 55, 1965–1974 (2007).CrossRefGoogle Scholar
  35. 35.
    U.G. Wegst, M. Schecter, A.E. Donius, and P.M. Hunger, Philos. Trans. A Math. Phys. Eng. Sci. 368, 2099–2121 (2010).CrossRefGoogle Scholar
  36. 36.
    S. Deville, J. Mater. Res. 28, 2202–2219 (2013).CrossRefGoogle Scholar
  37. 37.
    S. Deville, E. Maire, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup, and C. Guizard, J. Am. Ceram. Soc. 93, 2507–2510 (2010).CrossRefGoogle Scholar
  38. 38.
    G. Ravichandran and G. Subhash, J. Am. Ceram. Soc. 77, 263–267 (1994).CrossRefGoogle Scholar
  39. 39.
    S. Deville, E. Maire, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup, and C. Guizard, J. Am. Ceram. Soc. 92, 2497 (2009).CrossRefGoogle Scholar
  40. 40.
    S. Amini, M. Tadayon, S. Idapalapati, and A. Miserez, Nat. Mater. 14, 943 (2015).CrossRefGoogle Scholar
  41. 41.
    Y. Bouligand, Tissue Cell 4, 189–217 (1972).CrossRefGoogle Scholar
  42. 42.
    L.K. Grunenfelder, N. Suksangpanya, C. Salinas, G. Milliron, N. Yaraghi, S. Herrera, K. Evans-Lutterodt, S.R. Nutt, P. Zavattieri, and D. Kisailus, Acta Biomater. 10, 3997–4008 (2014).CrossRefGoogle Scholar
  43. 43.
    N. Suksangpanya, N.A. Yaraghi, R.B. Pipes, D. Kisailus, and P. Zavattieri, Int. J. Solids Struct. 150, 83 (2018).CrossRefGoogle Scholar
  44. 44.
    M.M. Porter, R. Imperio, M. Wen, M.A. Meyers, and J. McKittrick, Adv. Funct. Mater. 24, 1978–1987 (2014).CrossRefGoogle Scholar
  45. 45.
    S. Akurati, N. Tennant, and D. Ghosh, J. Mater. Res. 34, 959 (2019).CrossRefGoogle Scholar
  46. 46.
    M. Banda and D. Ghosh, Acta Mater. 149, 179 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2020

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of UtahSalt Lake CityUSA
  2. 2.School of Mechanical and Manufacturing EngineeringUNSW SydneySydneyAustralia

Personalised recommendations