Advertisement

Microscale Analysis of Melt Pool Dynamics Due To Particle Impingement and Laser-Matter Interaction in the Spot Laser Metal Deposition Process

  • 43 Accesses

Abstract

In situ observation of the melt pool in the laser metal deposition process reveals the highly unstable and dynamical nature of the free surface due to impinging particles. Surprisingly, no reported numerical work has taken into account the effect of individual particles; they rather use the continuum approach to mass addition, leading to less accurate predictions. In this article, high-fidelity, experimentally validated, free surface thermo-fluidic modelling is done at the micro-scale utilizing open-source codes. The physical phenomena governing the laser metal deposition process, including free surface convection driven flow, mass momentum and energy transfer due to impinging particles, laser-particle interaction, gas entrapment, etc., have been considered. The influence of impinging particles on melt pool dynamics was studied by carrying out analysis using dimensionless numbers (Peclet, Marangoni and Grashof). The finding reveals that during heating the melt flow is mainly driven by the Marangoni force; subsequently, during particle addition, forces due to both particle impact and Marangoni convection play the dominant and counter-acting role.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 186

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Z. Gan, Y. Lian, S.E. Lin, K.K. Jones, W.K. Liu, and G.J. Wagner, Integr. Mater. Manuf. Innov. 8, 178 (2019).

  2. 2.

    V. Manvatkar, A. De, and T. Debroy, J. Appl. Phys. 116, 124905 (2014).

  3. 3.

    V. Neela and A. De, Int. J. Adv. Manuf. Technol. 45, 935 (2009).

  4. 4.

    Z. Saldi, A. Kidess, S. Kenjereš, C. Zhao, I. Richardson, and C. Kleijn, Int. J. Heat Mass Transf. 66, 879 (2013).

  5. 5.

    M. Hao and Y. Sun, Int. J. Heat Mass Transf. 64, 352 (2013).

  6. 6.

    S. Morville, M. Carin, P. Peyre, M. Gharbi, D. Carron, P.L. Masson, and R. Fabbro, J. Laser Appl. 24, 032008 (2012).

  7. 7.

    Y.S. Lee, M. Nordin, S.S. Babu, and D.F. Farson, Weld. J. 93, 8 (2014).

  8. 8.

    Y. Lee, M. Nordin, S.S. Babu, and D.F. Farson, Metall. Mater. Trans. B 45, 1520 (2014).

  9. 9.

    S. Wen and Y.C. Shin, J. Appl. Phys. 108, 044908 (2010).

  10. 10.

    H. Qi, J. Mazumder, and H. Ki, J. Appl. Phys. 100, 024903 (2006).

  11. 11.

    A. Vinod, C. Srinivasa, R. Keshavamurthy, and P. Shashikumar, Rapid Prototyp. J. 22, 269 (2016).

  12. 12.

    O.B. Kovalev, A.V. Zaitsev, D. Novichenko, and I. Smurov, J. Therm. Spray Technol. 20, 465 (2010).

  13. 13.

    S. Zekovic, R. Dwivedi, and R. Kovacevic, Int. J. Mach. Tools Manuf. 47, 112 (2007).

  14. 14.

    I.M.J. Ramses and A. Pinkerton, Development and Application of a CFD Model of Laser Metal Deposition, dissertation (2012).

  15. 15.

    O. Ubbink, Numerical Prediction of Two Fluid Systems with Sharp Interfaces, dissertation (1997).

  16. 16.

    L. Li and B. Li, Particuology 39, 109 (2018).

  17. 17.

    F. Jamshidi, H. Heimel, M. Hasert, X. Cai, O. Deutschmann, H. Marschall, and M. Wörner, Comput. Phys. Commun. 236, 72 (2019).

  18. 18.

    Z.S. Saldi, Marangoni Driven Free Surface Flows in Liquid Weld Pools, dissertation (2012).

  19. 19.

    W.D. Bennon and F.P. Incropera, Int. J. Heat Mass Transf. 30, 10 (1987).

  20. 20.

    A.D. Brent, V.R. Voller, and K.J. Reid, Numer. Heat Transf. 13, 3 (1988).

  21. 21.

    A. Shah, A. Kumar, and J. Ramkumar, J. Mater. Process. Technol. 256, 109 (2018).

  22. 22.

    L. Tan, S. Leong, E. Leonardi, and T. Barber, Prog. Comput. Fluid Dyn. 6, 6 (2006).

  23. 23.

    Crespo António, Modelling of Heat Transfer and Phase Transformations in the Rapid Manufacturing of Titanium Components (INTECH Open Access Publisher, 2011).

  24. 24.

    X. He, P.W. Fuerschbach, and T. Debroy, J. Phys. D Appl. Phys. 36, 1388 (2003).

  25. 25.

    S. Bag and A. De, Computational Modelling of Conduction Mode Laser Welding Process (INTECH Open Access Publisher, 2010).

  26. 26.

    A. Hozoorbakhsh, M.I.S. Ismail, A.A.D.M. Sarhan, A. Bahadoran, and N.B.A. Aziz, Int. Commun. Heat Mass Transf. 75, 328 (2016).

Download references

Acknowledgements

The authors gratefully acknowledge the Department of Science and Technology, Ministry of Science and Technology, India (Grant No. DST/TDT/AMT/2017/118) for the financial support.

Author information

Correspondence to Arvind Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chouhan, A., Aggarwal, A. & Kumar, A. Microscale Analysis of Melt Pool Dynamics Due To Particle Impingement and Laser-Matter Interaction in the Spot Laser Metal Deposition Process. JOM (2020) doi:10.1007/s11837-019-04000-x

Download citation