Advertisement

Optimization of Spark Plasma Sintering Parameters Using the Taguchi Method for Developing Mg-Based Composites

  • 21 Accesses

Abstract

A magnesium-based metal matrix composite incorporated with 2.5 wt.% TiB2 has been fabricated using spark plasma sintering for the first time. The Taguchi design approach was used to analyze the significant influences of sintering parameters such as the temperature, pressure, and time on the physical and mechanical properties of Mg-based composites. Analysis of variance was used to investigate the effect of each sintering parameter. X-ray diffraction and field-emission scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy were used for structure and microstructure analysis. Rockwell hardness (HR) and Vickers hardness (HV) were used to evaluate the mechanical properties of the composite. The results showed that, in the case of microhardness, all the sintering parameters were controlling factors, and the sintering temperature was the most significant factor. The maximum values obtained for the densification, Rockwell hardness, and Vickers hardness were 100%, 62.18 HR, and 58.6 HV, respectively.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 186

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    R. del Campo, B. Savoini, A. Muñoz, M.A. Monge, and G. Garcés, J. Mech. Behav. Biomed. Mater. 39, 238 (2014).

  2. 2.

    E.P. DeGarmo, J.T. Black, R.A. Kohser, and B.E. Klamecki, Materials and Process in Manufacturing, 9th ed. (Upper Saddle River: Prentice Hall, 1997).

  3. 3.

    G. Garcés, M. Rodríguez, P. Pérez, and P. Adeva, Compos. Sci. Technol. 67, 632 (2007).

  4. 4.

    M. Ali, M. Hussein, and N. Al-Aqeeli, J. Alloys Compd. 792, 1162 (2019).

  5. 5.

    S.F. Hassan and M. Gupta, J. Alloys Compd. 345, 246 (2002).

  6. 6.

    X.N. Gu, X. Wang, N. Li, L. Li, Y.F. Zheng, and X. Miao, J. Biomed. Mater. Res. Part B Appl. Biomater. 99B, 127 (2011).

  7. 7.

    M. Rashad, F. Pan, M. Asif, J. She, and A. Ullah, J. Magnes. Alloys 3, 1 (2015).

  8. 8.

    G.K. Meenashisundaram, M.H. Nai, A. Almajid, and M. Gupta, Mater. Des. 65, 104 (2015).

  9. 9.

    S. Sankaranarayanan, U. Pranav Nayak, R.K. Sabat, S. Suwas, A. Almajid, and M. Gupta, J. Alloys Compd. 615, 211 (2014).

  10. 10.

    S.F. Hassan and M. Gupta, Mater. Sci. Eng. A 392, 163 (2005).

  11. 11.

    S.F. Hassan and M. Gupta, J. Compos. Mater. 41, 2533 (2007).

  12. 12.

    G.K. Meenashisundaram, S. Seetharaman, and M. Gupta, Mater. Charact. 94, 178 (2014).

  13. 13.

    M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Biomaterials 27, 1728 (2006).

  14. 14.

    W.N. Tang, S.S. Park, and B.S. You, Mater. Des. 32, 3537 (2011).

  15. 15.

    F. Barrère, T.A. Mahmood, K. de Groot, and C.A. van Blitterswijk, Mater. Sci. Eng. R Rep. 59, 38 (2008).

  16. 16.

    S. Jaiswal, R.M. Kumar, P. Gupta, M. Kumaraswamy, P. Roy, and D. Lahiri, J. Mech. Behav. Biomed. Mater. 78, 442 (2018).

  17. 17.

    G. Eddy Jai Poinern, S. Brundavanam, and D. Fawcett, Am. J. Biomed. Eng. 2, 218 (2013).

  18. 18.

    M. Hussein, A. Mohamed, and N. Al-Aqeeli, Materials 8, 2749 (2015).

  19. 19.

    S. Kannan, A. Balamurugan, and S. Rajeswari, Mater. Lett. 57, 2382 (2003).

  20. 20.

    M. Niinomi, Metall. Mater. Trans. A 33, 477 (2002).

  21. 21.

    L. Li, J. Gao, and Y. Wang, Surf. Coat. Technol. 185, 92 (2004).

  22. 22.

    T.H.D. Ong, N. Yu, G.K. Meenashisundaram, B. Schaller, and M. Gupta, Mater. Sci. Eng. C 78, 647 (2017).

  23. 23.

    J. Umeda, M. Kawakami, K. Kondoh, E.-S. Ayman, and H. Imai, Mater. Chem. Phys. 123, 649 (2010).

  24. 24.

    M.H. Nai, J. Wei, and M. Gupta, Mater. Des. 60, 490 (2014).

  25. 25.

    C. Ma, L. Chen, J. Xu, A. Fehrenbacher, Y. Li, F.E. Pfefferkorn, N.A. Duffie, J. Zheng, and X. Li, J. Biomed. Mater. Res. Part B Appl. Biomater. 101B, 870 (2013).

  26. 26.

    H. Khoshzaban Khosroshahi, F. Fereshteh Saniee, and H.R. Abedi, Mater. Sci. Eng. A 595, 284 (2014).

  27. 27.

    A.K. Khanra, H.C. Jung, K.S. Hong, and K.S. Shin, Mater. Sci. Eng. A 527, 6283 (2010).

  28. 28.

    B. Chen, K.-Y. Yin, T.-F. Lu, B.-Y. Sun, Q. Dong, J.-X. Zheng, C. Lu, and Z.-C. Li, J. Mater. Sci. Technol. 32, 858 (2016).

  29. 29.

    E. Mohammadi Zahrani and M.H. Fathi, Ceram. Int. 35, 2311 (2009).

  30. 30.

    C.A. Stüpp, G. Szakács, C.L. Mendis, F. Gensch, S. Müller, F. Feyerabend, D. Hotza, M.C. Fredel, and N. Hort, Magnesium Technology (Cham: Springer, 2015), pp. 425–429.

  31. 31.

    M.H. Fathi and E.M. Zahrani, J. Alloys Compd. 475, 408 (2009).

  32. 32.

    M.A. Hussein, C. Suryanarayana, M.K. Arumugam, and N. Al-Aqeeli, Mater. Des. 83, 344 (2015).

  33. 33.

    Y.F. Zheng, X.N. Gu, Y.L. Xi, and D.L. Chai, Acta Biomater. 6, 1783 (2010).

  34. 34.

    V.A.R. Henriques, E.T. Galvani, S.L.G. Petroni, M.S.M. Paula, and T.G. Lemos, J. Mater. Sci. 45, 5844 (2010).

  35. 35.

    S.F. Hassan, Arch. Metall. Mater. 61, 1521 (2016).

  36. 36.

    P.S. Kumar, K. Ponappa, M. Udhayasankar, and B. Aravindkumar, Arch. Metall. Mater. 62, 1851 (2017).

  37. 37.

    H. Cay, H. Xu, and Q. Li, Mater. Sci. Eng. A 574, 137 (2013).

  38. 38.

    M. Rashad, F. Pan, A. Tang, Y. Lu, M. Asif, S. Hussain, J. She, J. Gou, and J. Mao, J. Magnes. Alloys 1, 242 (2013).

  39. 39.

    S.F. Hassan and M. Gupta, Compos. Struct. 72, 19 (2006).

  40. 40.

    M. Oghbaei and O. Mirzaee, J. Alloys Compd. 494, 175 (2010).

  41. 41.

    M.A. Hussein, C. Suryanarayana, and N. Al-Aqeeli, Mater. Des. 87, 693 (2015).

  42. 42.

    D. Salamon and Z. Shen, Mater. Sci. Eng. A 475, 105 (2008).

  43. 43.

    B. Yaman and H. Mandal, Mater. Lett. 63, 1041 (2009).

  44. 44.

    N. Gao, J. Li, D. Zhang, and Y. Miyamoto, J. Eur. Ceram. Soc. 22, 2365 (2002).

  45. 45.

    M. Omori, Mater. Sci. Eng. A 287, 183 (2000).

  46. 46.

    N.Q. Cao, D.N. Pham, N. Kai, H.V. Dinh, S. Hiromoto, and E. Kobayashi, Metals (Basel) 7, 358 (2017).

  47. 47.

    T. Chartier and A. Badev, Handbook of Advanced Ceramics: Chapter 6.5. Rapid Prototyping of Ceramics (Amsterdam: Elsevier, 2013).

  48. 48.

    K. Tee, L. Lu, and M.O. Lai, J. Mater. Process. Technol. 89–90, 513 (1999).

  49. 49.

    M. Wong and Y.C. Lee, Surf. Coat. Technol. 120–121, 194 (1999).

  50. 50.

    H.Y. Wang, Q.C. Jiang, Y. Wang, B.X. Ma, and F. Zhao, Mater. Lett. 58, 3509 (2004).

  51. 51.

    J. Davim and P. Aveiro, Design of Experiments in Production Engineering (Cham: Springer, 2016).

  52. 52.

    S. Mavruz and R. Oğulata, Fibres Text. East. Eur. 18, 78 (2010).

  53. 53.

    Ö. Küçük, T. Elfarah, S. Islak, and C. Özorak, Metals (Basel) 7, 352 (2017).

  54. 54.

    P. Sahoo, A. Pratap, and A. Bandyopadhyay, Int. J. Ind. Eng. Comput. 8, 385 (2017).

  55. 55.

    Z. Xiuqing, W. Haowei, L. Lihua, T. Xinying, and M. Naiheng, Mater. Lett. 59, 2105 (2005).

  56. 56.

    N. Stanford, D. Atwell, A. Beer, C. Davies, and M.R. Barnett, Scr. Mater. 59, 772 (2008).

  57. 57.

    Y. Xu, F. Gensch, Z. Ren, K.U. Kainer, and N. Hort, Prog. Nat. Sci. Mater. Int. 28, 724 (2018).

Download references

Acknowledgements

The authors acknowledge the King Fahd University of Petroleum and Minerals (KFUPM) and Center of Research Excellence in Corrosion for providing the support to conduct this research.

Author information

Correspondence to M. A. Hussein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 598 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ali, M., Hussein, M.A. & Al-Aqeeli, N. Optimization of Spark Plasma Sintering Parameters Using the Taguchi Method for Developing Mg-Based Composites. JOM (2020) doi:10.1007/s11837-019-03997-5

Download citation