pp 1–19 | Cite as

Fabrication and Mechanics of Bioinspired Materials with Dense Architectures: Current Status and Future Perspectives

  • Mohammad MirkhalafEmail author
  • Hala ZreiqatEmail author
Advanced Manufacturing for Biomaterials and Biological Materials


Materials with dense architectures are composed of stiff and strong building blocks that are arranged to interact through energy-dissipative interfaces. Examples of these materials include engineered constructions such as the Abeille vault and highly mineralized natural materials such as tooth enamel. Compared with synthetic materials, natural materials with dense architectures exhibit outstanding mechanical performance, serving as a continued source of inspiration and study. This review details the status of advances in the fabrication and mechanics of bioinspired materials with dense architectures. The fabrication methods include freeze-casting, mineralization, 3D printing, coating–assembling, and laser engraving. Micromechanics of the resulting materials are discussed in tension, flexion, fracture, puncture, and impact. The discussion shows that strength of these materials can be improved by decreasing the size of their building blocks to the nm–µm range. However, interface hardening mechanisms that are crucial to the spread of deformation and toughness have not yet been implemented at nm–μm scales although they have been successfully realized for materials with larger building blocks. Future directions to address this and other unmet challenges are discussed throughout the text.



The authors acknowledge funding from the Australian Research Council, the Australian National Health and Medical Research Council, and the Natural Sciences and Engineering Research Council of Canada. M. Mirkhalaf acknowledges useful discussions with Dr. Peter Newman and Dr. Gurvinder Singh.


  1. 1.
    R.O. Ritchie, Nat. Mater. 10, 11 (2011). CrossRefGoogle Scholar
  2. 2.
    G. Mayer, Science 310, 5751 (2005).CrossRefGoogle Scholar
  3. 3.
    F. Barthelat, Int. Mater. Rev. 60, 8 (2015).CrossRefGoogle Scholar
  4. 4.
    M. Eder, S. Amini, and P. Fratzl, Science 362, 6414 (2018).CrossRefGoogle Scholar
  5. 5.
    H. Gao, B. Ji, I.L. Jäger, E. Arzt, and P. Fratzl, Proc. Natl. Acad. Sci. U.S.A. 100, 10 (2003).CrossRefGoogle Scholar
  6. 6.
    E. Feilden, T. Giovannini, N. Ni, C. Ferraro, E. Saiz, L. Vandeperre, and F. Giuliani, Scr. Mater. 131, 55 (2017).CrossRefGoogle Scholar
  7. 7.
    B.L. Smith, T.E. Schaeffer, M. Viani, J.B. Thompson, N.A. Frederick, J. Kindt, A. Belcher, G.D. Stucky, D.E. Morse, and P.K. Hansma, Nature (London) 399, 6738 (1999).CrossRefGoogle Scholar
  8. 8.
    F. Barthelat, H. Tang, P.D. Zavattieri, C.M. Li, and H.D. Espinosa, J. Mech. Phys. Solids 55, 2 (2007).CrossRefGoogle Scholar
  9. 9.
    U.G. Wegst, H. Bai, E. Saiz, A.P. Tomsia, and R.O. Ritchie, Nat. Mater. 13, 508 (2014).CrossRefGoogle Scholar
  10. 10.
    Z. Yin, F. Hannard, and F. Barthelat, Science 364, 6447 (2019).CrossRefGoogle Scholar
  11. 11.
    M. Mirkhalaf, A.K. Dastjerdi, and F. Barthelat, Nat. Commun. 5, 3166 (2014).CrossRefGoogle Scholar
  12. 12.
    M.R. Begley, N.R. Philips, B.G. Compton, D.V. Wilbrink, R.O. Ritchie, and M. Utz, J. Mech. Phys. Solids 60, 8 (2012).CrossRefGoogle Scholar
  13. 13.
    S. Askarinejad and N. Rahbar, J. R. Soc. Interface 12, 102 (2015).CrossRefGoogle Scholar
  14. 14.
    N. Abid, M. Mirkhalaf, and F. Barthelat, J. Mech. Phys. Solids (2017)Google Scholar
  15. 15.
    N.S. Al-Maskari, D.A. McAdams, and J. Reddy, Mech. Adv. Mater. Struct. 26, 9 (2019).CrossRefGoogle Scholar
  16. 16.
    M. Mirkhalaf and B. Ashrafi, Mater. Today Commun. (2017).Google Scholar
  17. 17.
    A. Bahmani, G. Li, T.L. Willett, and J. Montesano, Compos. Struct. 212 (2019).Google Scholar
  18. 18.
    G.X. Gu, C.-T. Chen, D.J. Richmond, and M.J. Buehler, Mater. Horizons 5, 5 (2018).CrossRefGoogle Scholar
  19. 19.
    F. Barthelat and M. Mirkhalaf, J. R. Soc. Interface 10, 89 (2013).Google Scholar
  20. 20.
    F. Barthelat, J. Mech. Phys. Solids 73 (2014).Google Scholar
  21. 21.
    N. Al-Maskari, D. McAdams, and J. Reddy, Mech. Adv. Mater. Struct. (2019).Google Scholar
  22. 22.
    A.R. Studart, Chem. Soc. Rev. 45, 2 (2016).CrossRefGoogle Scholar
  23. 23.
    I. Corni, T. Harvey, J. Wharton, K. Stokes, F. Walsh, and R. Wood, Bioinspiration Biomimetics 7, 3 (2012).CrossRefGoogle Scholar
  24. 24.
    P. Fratzl, O. Kolednik, F.D. Fischer, and M.N. Dean, Chem. Soc. Rev. 45, 2 (2016).CrossRefGoogle Scholar
  25. 25.
    W. Huang, D. Restrepo, J.Y. Jung, F.Y. Su, Z. Liu, R.O. Ritchie, J. McKittrick, P. Zavattieri, and D. Kisailus, Adv. Mater. (2019).Google Scholar
  26. 26.
    M. Mirkhalaf, Z. Deju, and F. Barthelat, Biomimetic hard materials.Engineered Biomimicry, ed. A. Lakhtakia and R.J. Martin-Palma (New York: Elsevier Inc., 2013),Google Scholar
  27. 27.
    O. Bouaziz, Y. Brechet, and J.D. Embury, Adv. Eng. Mater. 10, 1 (2008).CrossRefGoogle Scholar
  28. 28.
    Y. Brechet and J.D. Embury, Scr. Mater. 68, 1 (2013).CrossRefGoogle Scholar
  29. 29.
    A. Dreyer, A. Feld, A. Kornowski, E.D. Yilmaz, H. Noei, A. Meyer, T. Krekeler, C. Jiao, H. Weller, and G. Schneider, Nat. Mater. 15, 5 (2016).CrossRefGoogle Scholar
  30. 30.
    G.A. Williams, R. Ishige, O.R. Cromwell, J. Chung, A. Takahara, and Z. Guan, Adv. Mater. 27, 26 (2015).CrossRefGoogle Scholar
  31. 31.
    F. Bouville, E. Maire, S. Meille, B. Van de Moortèle, A.J. Stevenson, and S. Deville, Nat. Mater. 13, 5 (2014).CrossRefGoogle Scholar
  32. 32.
    L.-B. Mao, H.-L. Gao, H.-B. Yao, L. Liu, H. Cölfen, G. Liu, S.-M. Chen, S.-K. Li, Y.-X. Yan, and Y.-Y. Liu, Science 354, 6308 (2016).CrossRefGoogle Scholar
  33. 33.
    M.A. Meyers, P.Y. Chen, A.Y.M. Lin, and Y. Seki, Prog. Mater Sci. 53, 1 (2008).CrossRefGoogle Scholar
  34. 34.
    A. Finnemore, P. Cunha, T. Shean, S. Vignolini, S. Guldin, M. Oyen, and U. Steiner, Nat. Commun. 3 (2012).Google Scholar
  35. 35.
    M. Farhadi-Khouzani, C. Schütz, G.M. Durak, J. Fornell, J. Sort, G. Salazar-Alvarez, L. Bergström, and D. Gebauer, J. Mater. Chem. A 5, 31 (2017).CrossRefGoogle Scholar
  36. 36.
    I.A. Aksay, M. Trau, S. Manne, I. Honma, N. Yao, L. Zhou, P. Fenter, P.M. Eisenberger, and S.M. Gruner, Science 273, 5277 (1996).CrossRefGoogle Scholar
  37. 37.
    T. Kato, Adv. Mater. 12, 20 (2000).CrossRefGoogle Scholar
  38. 38.
    H. Gong, M. Pluntke, O. Marti, P. Walther, L. Gower, H. Cölfen, and D. Volkmer, Colloids Surf. A 354, 1 (2010).CrossRefGoogle Scholar
  39. 39.
    Z. Tang, N.A. Kotov, S. Magonov, and B. Ozturk, Nat. Mater. 2, 6 (2003).CrossRefGoogle Scholar
  40. 40.
    P. Podsiadlo, A.K. Kaushik, E.M. Arruda, A.M. Waas, B.S. Shim, J. Xu, H. Nandivada, B.G. Pumplin, J. Lahann, A. Ramamoorthy, and N.A. Kotov, Science 318, 5847 (2007).CrossRefGoogle Scholar
  41. 41.
    J. Han, Y. Dou, D. Yan, J. Ma, M. Wei, D.G. Evans, and X. Duan, Chem. Commun. 47, 18 (2011).Google Scholar
  42. 42.
    L.J. Bonderer, A.R. Studart, and L.J. Gauckler, Science 319, 5866 (2008).CrossRefGoogle Scholar
  43. 43.
    H.B. Yao, H.Y. Fang, Z.H. Tan, L.H. Wu, and S.H. Yu, Angew. Chem. Int. Ed. 49, 12 (2010).Google Scholar
  44. 44.
    H.-B. Yao, Y. Guan, L.-B. Mao, Y. Wang, X.-H. Wang, D.-Q. Tao, and S.-H. Yu, J. Mater. Chem. 22, 26 (2012).Google Scholar
  45. 45.
    S. Deville, Adv. Eng. Mater. 10, 3 (2008).CrossRefGoogle Scholar
  46. 46.
    Q. Cheng, C. Huang, and A.P. Tomsia, Adv. Mater. 29, 45 (2017).Google Scholar
  47. 47.
    S. Deville, E. Saiz, R.K. Nalla, and A.P. Tomsia, Science 311, 5760 (2006).CrossRefGoogle Scholar
  48. 48.
    E. Munch, M.E. Launey, D.H. Alsem, E. Saiz, A.P. Tomsia, and R.O. Ritchie, Science 322, 5907 (2008).CrossRefGoogle Scholar
  49. 49.
    T. Waschkies, R. Oberacker, and M.J. Hoffmann, J. Am. Ceram. Soc. 92 (2009).Google Scholar
  50. 51.
    M.E. Launey, E. Munch, D.H. Alsem, E. Saiz, A.P. Tomsia, and R.O. Ritchie, J. R. Soc. Interface 7, 46 (2010).CrossRefGoogle Scholar
  51. 51.
    N. Guo, P. Shen, R.-F. Guo, and Q.-C. Jiang, Mater. Sci. Eng. A 748 (2019).Google Scholar
  52. 52.
    H. Bai, Y. Chen, B. Delattre, A.P. Tomsia, and R.O. Ritchie, Sci. Adv. 1, 11 (2015).CrossRefGoogle Scholar
  53. 53.
    P.M. Hunger, A.E. Donius, and U.G.K. Wegst, J. Mech. Behav. Biomed. Mater. 19, 87 (2013).CrossRefGoogle Scholar
  54. 54.
    M. Grossman, F. Bouville, K. Masania, and A.R. Studart, Proc. Natl. Acad. Sci. 115, 50 (2018).CrossRefGoogle Scholar
  55. 55.
    G. Du, A. Mao, J. Yu, J. Hou, N. Zhao, J. Han, Q. Zhao, W. Gao, T. Xie, and H. Bai, Nat. Commun. 10, 1 (2019).CrossRefGoogle Scholar
  56. 56.
    M.J. Garnier and D.C. Dunand, Mater. Sci. Eng. A 743, 190 (2019).CrossRefGoogle Scholar
  57. 57.
    O.T. Picot, V.G. Rocha, C. Ferraro, N. Ni, E. D’elia, S. Meille, J. Chevalier, T. Saunders, T. Peijs, and M.J. Reece, Nat. Commun. 8, 14425 (2017).CrossRefGoogle Scholar
  58. 58.
    N. Zhao, M. Yang, Q. Zhao, W. Gao, T. Xie, and H. Bai, ACS Nano 11, 5 (2017).Google Scholar
  59. 59.
    H. Zhang, I. Hussain, M. Brust, M.F. Butler, S.P. Rannard, and A.I. Cooper, Nat. Mater. 4, 10 (2005).Google Scholar
  60. 60.
    M. Zhang, D. Jiao, G. Tan, J. Zhang, S. Wang, J. Wang, Z. Liu, Z. Zhang, and R.O. Ritchie, ACS Appl. Nano Mater. 2, 2 (2019).Google Scholar
  61. 61.
    C. Ferraro, E. Garcia-Tuñon, V.G. Rocha, S. Barg, M.D. Fariñas, T.E.G. Alvarez-Arenas, G. Sernicola, F. Giuliani, and E. Saiz, Adv. Func. Mater. 26, 10 (2016).CrossRefGoogle Scholar
  62. 62.
    M.M. Porter, J. Mckittrick, and M.A. Meyers, JOM 65, 6 (2013).CrossRefGoogle Scholar
  63. 63.
    B.E. Kelly, I. Bhattacharya, H. Heidari, M. Shusteff, C.M. Spadaccini, and H.K. Taylor, Science 363, 6431 (2019).CrossRefGoogle Scholar
  64. 64.
    I.D. Robertson, M. Yourdkhani, P.J. Centellas, J.E. Aw, D.G. Ivanoff, E. Goli, E.M. Lloyd, L.M. Dean, N.R. Sottos, and P.H. Geubelle, Nature 557, 7704 (2018).CrossRefGoogle Scholar
  65. 65.
    Z. Jia, Y. Yu, S. Hou, and L. Wang, J. Mech. Phys. Solids 125, 178 (2019).CrossRefGoogle Scholar
  66. 66.
    E.E. de Obaldia, C. Jeong, L.K. Grunenfelder, D. Kisailus, and P. Zavattieri, J. Mech. Behav. Biomed. Mater. 48, 70 (2015).CrossRefGoogle Scholar
  67. 67.
    L.S. Dimas, G.H. Bratzel, I. Eylon, and M.J. Buehler, Adv. Func. Mater. 23, 36 (2013).CrossRefGoogle Scholar
  68. 68.
    E. Feilden, C. Ferraro, Q. Zhang, E. García-Tuñón, E. D’Elia, F. Giuliani, L. Vandeperre, and E. Saiz, Sci. Rep. 7, 1 (2017).CrossRefGoogle Scholar
  69. 69.
    N. Suksangpanya, N.A. Yaraghi, R.B. Pipes, D. Kisailus, and P. Zavattieri, Int. J. Solids Struct. 150, 83 (2018).CrossRefGoogle Scholar
  70. 70.
    L. Zorzetto and D. Ruffoni, Adv. Func. Mater. 29, 1 (2019).CrossRefGoogle Scholar
  71. 71.
    G.X. Gu, M. Takaffoli, and M.J. Buehler, Adv. Mater. 29, 28 (2017).Google Scholar
  72. 72.
    Z. Jia, Y. Yu, and L. Wang, Mater. Des. 168, 107650 (2019).CrossRefGoogle Scholar
  73. 73.
    K. Agarwal, Y. Zhou, A. Ali, H. Parveen, I. Radchenko, A. Baji, and A.S. Budiman, Adv. Mater. Sci. Eng. 2018, 1 (2018).CrossRefGoogle Scholar
  74. 74.
    R. Chen, J. Liu, C. Yang, D.A. Weitz, H. He, D. Li, D. Chen, K. Liu, and H. Bai, ACS Appl. Mater. Interfaces (2019).Google Scholar
  75. 75.
    B.G. Compton and J.A. Lewis, Adv. Mater. 26, 34 (2014).Google Scholar
  76. 76.
    D. Kokkinis, M. Schaffner, and A.R. Studart, Nat. Commun. 6, 8643 (2015).CrossRefGoogle Scholar
  77. 77.
    Y. Yang, X. Li, M. Chu, H. Sun, J. Jin, K. Yu, Q. Wang, Q. Zhou, and Y. Chen, Sci. Adv. 5, 4 (2019).Google Scholar
  78. 78.
    J.R. Raney, B.G. Compton, J. Mueller, T.J. Ober, K. Shea, and J.A. Lewis, Proc. Natl. Acad. Sci. 115, 6 (2018).CrossRefGoogle Scholar
  79. 79.
    J.J. Martin, B.E. Fiore, and R.M. Erb, Nat. Commun. 6, 8641 (2015).CrossRefGoogle Scholar
  80. 80.
    R.M. Erb, R. Libanori, N. Rothfuchs, and A.R. Studart, Science 335, 6065 (2012).CrossRefGoogle Scholar
  81. 81.
    Verner Hakonsen, Gurvinder Singh, Peter S. Normile, José A. De Toro, and Erik Wahlström, Jianying He (Advacned Functional Materials Accepted: Z. Zhang, 2019).Google Scholar
  82. 82.
    A. Walther, I. Bjurhager, J.M. Malho, J. Pere, J. Ruokolainen, L.A. Berglund, and O. Ikkala, Nano Lett. 10, 8 (2010).CrossRefGoogle Scholar
  83. 83.
    D. Mereib, U.-C.C. Seu, M. Zakhour, M. Nakhl, N. Tessier-Doyen, J.-L. Bobet, and J.-F. Silvain, J. Mater. Sci. 53, 10 (2018).CrossRefGoogle Scholar
  84. 84.
    R.P. Wilkerson, B. Gludovatz, J. Watts, A.P. Tomsia, G.E. Hilmas, and R.O. Ritchie, Adv. Mater. 28, 45 (2016).CrossRefGoogle Scholar
  85. 85.
    R.P. Wilkerson, B. Gludovatz, J. Watts, A.P. Tomsia, G.E. Hilmas, and R.O. Ritchie, Acta Mater. 148, 147 (2018).CrossRefGoogle Scholar
  86. 86.
    N. Almqvist, N.H. Thomson, B.L. Smith, G.D. Stucky, D.E. Morse, and P.K. Hansma, Mater. Sci. Eng. C 7, 1 (1999).CrossRefGoogle Scholar
  87. 87.
    D. Ji and J. Kim, ACS Nano 13, 3 (2019).Google Scholar
  88. 88.
    Y.Q. Li, T. Yu, T.Y. Yang, L.X. Zheng, and K. Liao, Adv. Mater. 24, 25 (2012).Google Scholar
  89. 89.
    B. Liang, Y. Shu, P. Wan, H. Zhao, S. Dong, W. Hao, and P. Yin, Compos. Sci. Technol. 183, 107833 (2019).CrossRefGoogle Scholar
  90. 90.
    T. Guo, L. Heng, M. Wang, J. Wang, and L. Jiang, Adv. Mater. 28, 38 (2016).Google Scholar
  91. 91.
    W. Cui, M. Li, J. Liu, B. Wang, C. Zhang, L. Jiang, and Q. Cheng, ACS Nano 8, 9 (2014).Google Scholar
  92. 92.
    H.-L. Gao, S.-M. Chen, L.-B. Mao, Z.-Q. Song, H.-B. Yao, H. Cölfen, X.-S. Luo, F. Zhang, Z. Pan, and Y.-F. Meng, Nat. Commun. 8, 1 (2017).CrossRefGoogle Scholar
  93. 93.
    P. Walley, Y. Zhang, and J. Evans, Bioinspiration Biomimetics 7, 4 (2012).CrossRefGoogle Scholar
  94. 94.
    R. Chen, C.-A. Wang, Y. Huang, and H. Le, Mater. Sci. Eng. C 28, 2 (2008).Google Scholar
  95. 95.
    L.J. Bonderer, K. Feldman, and L.J. Gauckler, Compos. Sci. Technol. 70, 13 (2010).Google Scholar
  96. 96.
    P. Das, J.-M. Malho, K. Rahimi, F.H. Schacher, B. Wang, D.E. Demco, and A. Walther, Nat. Commun. 6, 5967 (2015).CrossRefGoogle Scholar
  97. 97.
    H.B. Yao, Z.H. Tan, H.Y. Fang, and S.H. Yu, Angew. Chem. Int. Ed. 49, 52 (2010).Google Scholar
  98. 98.
    L. Medina, Y. Nishiyama, K. Daicho, T. Saito, M. Yan, and L.A. Berglund, Macromolecules 52, 8 (2019).CrossRefGoogle Scholar
  99. 99.
    P. Laaksonen, A. Walther, J.M. Malho, M. Kainlauri, O. Ikkala, and M.B. Linder, Angew. Chem. Int. Ed. 50, 37 (2011).CrossRefGoogle Scholar
  100. 100.
    C.-A. Wang, B. Long, W. Lin, Y. Huang, and J. Sun, J. Mater. Res. 23, 6 (2008).CrossRefGoogle Scholar
  101. 101.
    W. Lin, C.-A. Wang, H. Le, B. Long, and Y. Huang, Mater. Sci. Eng., C 28, 7 (2008).CrossRefGoogle Scholar
  102. 102.
    T.-H. Lin, W.-H. Huang, I.-K. Jun, and P. Jiang, Chem. Mater. 21, 10 (2009).Google Scholar
  103. 103.
    H. Le Ferrand, F. Bouville, T.P. Niebel, and A.R. Studart, Nat. Mater. 14, 11 (2015).CrossRefGoogle Scholar
  104. 104.
    P.I. Pelissari, F. Bouville, V.C. Pandolfelli, D. Carnelli, F. Giuliani, A.P. Luz, E. Saiz, and A.R. Studart, J. Eur. Ceram. Soc. 38, 4 (2018).CrossRefGoogle Scholar
  105. 105.
    A. Wat, C. Ferraro, X. Deng, A. Sweet, A.P. Tomsia, E. Saiz, and R.O. Ritchie, Small (2019).Google Scholar
  106. 106.
    H. Le Ferrand and F. Bouville, J. Am. Ceram. Soc. (2018).Google Scholar
  107. 107.
    M. Mirkhalaf and F. Barthelat, J. Mech. Behav. Biomed. Mater. 56, 23 (2016).CrossRefGoogle Scholar
  108. 108.
    M.T. Abba, P.M. Hunger, S.R. Kalidindi, and U.G. Wegst, J. Mech. Behav. Biomed. Mater. 55, 140 (2016).CrossRefGoogle Scholar
  109. 109.
    Z. Xiong, C. Liao, W. Han, and X. Wang, Adv. Mater. 27, 30 (2015).CrossRefGoogle Scholar
  110. 110.
    M. Mirkhalaf, C.J. Barrett, and F. Barthelat, RSC Adv. 5, 7 (2015).Google Scholar
  111. 111.
    S.-I. Roohani-Esfahani, K. Lin, and H. Zreiqat, J. Mater. Sci. 52, 15 (2017).CrossRefGoogle Scholar
  112. 112.
    M. Grossman, F. Bouville, F. Erni, K. Masania, R. Libanori, and A.R. Studart, Adv. Mater. 29, 8 (2017).CrossRefGoogle Scholar
  113. 113.
    T. Magrini, F. Bouville, A. Lauria, H. Le Ferrand, T.P. Niebel, and A.R. Studart, Nature Communications 10, 1 (2019).CrossRefGoogle Scholar
  114. 114.
    Z. Xu, J. Huang, C. Zhang, S. Daryadel, A. Behroozfar, B. McWilliams, B. Boesl, A. Agarwal, and M. Minary-Jolandan, Adv. Eng. Mater. 20, 5 (2018).Google Scholar
  115. 115.
    S. Baskaran, S.D. Nunn, D. Popovic, and J.W. Halloran, J. Am. Ceram. Soc. 76, 9 (1993).Google Scholar
  116. 116.
    S. Baskaran, S.D. Nunn, and J.W. Halloran, J. Am. Ceram. Soc. 77, 5 (1994).Google Scholar
  117. 117.
    M. Götz, T. Fey, and P. Greil, J. Am. Ceram. Soc. 95, 1 (2012).CrossRefGoogle Scholar
  118. 118.
    P.F. Damasceno, M. Engel, and S.C. Glotzer, Science 337, 6093 (2012).CrossRefGoogle Scholar
  119. 119.
    G.M. Whitesides and B. Grzybowski, Science 295, 5564 (2002).CrossRefGoogle Scholar
  120. 120.
    S. Khandelwal, T. Siegmund, R.J. Cipra, and J.S. Bolton, Int. J. Solids Struct. 49, 18 (2012).CrossRefGoogle Scholar
  121. 121.
    M. Carlesso, R. Giacomelli, T. Krause, A. Molotnikov, D. Koch, S. Kroll, K. Tushtev, Y. Estrin, and K. Rezwan, J. Eur. Ceram. Soc. 33, 13 (2013).CrossRefGoogle Scholar
  122. 122.
    M. Mirkhalaf, A. Sunesara, B. Ashrafi, and F. Barthelat, Int. J. Solids Struct. 158, 52 (2019).CrossRefGoogle Scholar
  123. 123.
    S. Schaare, W. Riehemann, and Y. Estrin, Mater. Sci. Eng. A 521-522, 380 (2009).CrossRefGoogle Scholar
  124. 124.
    A.V. Dyskin, Y. Estrin, A.J. Kanel-Belov, and E. Pasternak, Compos. Sci. Technol. 63, 3 (2003).CrossRefGoogle Scholar
  125. 125.
    A. Autruffe, F. Pelloux, C. Brugger, P. Duval, Y. Brechet, and M. Fivel, Adv. Eng. Mater. 9, 8 (2007).CrossRefGoogle Scholar
  126. 126.
    J. Henry and S. Pimenta, J. Mech. Phys. Solids 118, 332 (2018).CrossRefGoogle Scholar
  127. 127.
    L. Mencattelli and S.T. Pinho, Compos. Sci. Technol. (2019).Google Scholar
  128. 128.
    Y. Feng, T. Siegmund, E. Habtour, and J. Riddick, Int. J. Impact Eng. 75, 140 (2015).CrossRefGoogle Scholar
  129. 129.
    I. Malik, M. Mirkhalaf, and F. Barthelat, J. Mech. Phys. Solids 102, 224 (2017).MathSciNetCrossRefGoogle Scholar
  130. 130.
    A.V. Dyskin, Y. Estrin, E. Pasternak, H.C. Khor, and A.J. Kanel-Belov, Acta Astronaut. 57, 1 (2005).CrossRefGoogle Scholar
  131. 131.
    M. Mirkhalaf, T. Zhou, and F. Barthelat, Proc. Natl. Acad. Sci. 115, 37 (2018).CrossRefGoogle Scholar
  132. 132.
    M. Stumpf, X. Fan, J. Biggemann, P. Greil, and T. Fey, J. Eur. Ceram. Soc. 39, 6 (2019).CrossRefGoogle Scholar
  133. 133.
    T. Siegmund, F. Barthelat, R. Cipra, E. Habtour, and J. Riddick, Appl. Mech. Rev. 68, 4 (2016).CrossRefGoogle Scholar
  134. 134.
    W.J. Clegg, K. Kendall, N.M. Alford, T.W. Button, and J.D. Birchall, Nature 347, 6292 (1990).CrossRefGoogle Scholar
  135. 135.
    E. Pogorelov, K. Tushtev, A. Arnebold, K. Koschek, A. Hartwig, and K. Rezwan, J. Am. Ceram. Soc. 101, 10 (2018).CrossRefGoogle Scholar
  136. 136.
    Z. Wang, Y. Sun, H. Wu, and C. Zhang, Constr. Build. Mater. 154, 169 (2018).Google Scholar
  137. 137.
    J. Zechner and O. Kolednik, J. Mater. Sci. 48, 15 (2013).CrossRefGoogle Scholar
  138. 138.
    G. Mayer, Mater. Sci. Eng. C 26, 8 (2006).CrossRefGoogle Scholar
  139. 139.
    F. Barthelat and D. Zhu, J. Mater. Res. 26, 10 (2011).CrossRefGoogle Scholar
  140. 140.
    A.Y. Dyskin, Y. Estrin, A.J. Kanel-Belov, and E. Pasternak, Philos. Mag. Lett. 83, 3 (2003).CrossRefGoogle Scholar
  141. 141.
    M. Brocato and L. Mondardini, Int. J. Solids Struct. 49, 13 (2012).CrossRefGoogle Scholar
  142. 142.
    A.V. Dyskin, Y. Estrin, E. Pasternak, H.C. Khor, and A.J. Kanel-Belov, Adv. Eng. Mater. 5, 3 (2003).CrossRefGoogle Scholar
  143. 143.
    M. Mirkhalaf and F. Barthelat, Extreme Mech. Lett. 11, 1 (2017).CrossRefGoogle Scholar
  144. 144.
    A.S. Dalaq and F. Barthelat, Int. J. Solids Struct. 171, 146 (2019).CrossRefGoogle Scholar
  145. 145.
    L. Chen, R. Ballarini, H. Kahn, and A. Heuer, J. Mater. Res. 22, 1 (2007).CrossRefGoogle Scholar
  146. 146.
    G. Karambelas, S. Santhanam, and Z.N. Wing, Ceram. Int. 39, 2 (2013).CrossRefGoogle Scholar
  147. 147.
    R.R. Gattass and E. Mazur, Nat. Photonics 2, 4 (2008).CrossRefGoogle Scholar
  148. 148.
    M. Mirkhalaf, J. Tanguay, and F. Barthelat, Extreme Mech. Lett. 7, 104 (2016).CrossRefGoogle Scholar
  149. 149.
    M. Mirkhalaf and F. Barthelat, Bioinspiration Biomimetics 10, 2 (2015).Google Scholar
  150. 150.
    R.K. Chintapalli, M. Mirkhalaf, A.K. Dastjerdi, and F. Barthelat, Bioinspiration Biomimetics 9, 3 (2014).CrossRefGoogle Scholar
  151. 151.
    I.A. Malik and F. Barthelat, Int. J. Solids Struct. 97, 389 (2016).CrossRefGoogle Scholar
  152. 152.
    Z. Yin, A. Dastjerdi, and F. Barthelat, Acta Biomater. 75 (2018).Google Scholar
  153. 154.
    H.Y. Sarvestani, M. Mirkhalaf, A. Akbarzadeh, D. Backman, M. Genest, and B. Ashrafi, Mater. Des. 167, 107627 (2019).CrossRefGoogle Scholar
  154. 154.
    E. Kheng, H. Iyer, P. Podsiadlo, A. Kaushik, N. Kotov, E. Arruda, and A. Waas, Eng. Fract. Mech. 77, 16 (2010).CrossRefGoogle Scholar
  155. 155.
    C.-A. Wang, Y. Huang, Q. Zan, H. Guo, and S. Cai, Mater. Sci. Eng., C 11, 1 (2000).CrossRefGoogle Scholar
  156. 156.
    T.P. Niebel, F. Bouville, D. Kokkinis, and A.R. Studart, J. Mech. Phys. Solids 96, 133 (2016).CrossRefGoogle Scholar
  157. 157.
    A. Wat, J.I. Lee, C.W. Ryu, B. Gludovatz, J. Kim, A.P. Tomsia, T. Ishikawa, J. Schmitz, A. Meyer, and M. Alfreider, Nature communications 10, 1 (2019).CrossRefGoogle Scholar
  158. 158.
    A. Mather, R. Cipra, and T. Siegmund, Int. J. Struct. Integr. 3, 1 (2012).CrossRefGoogle Scholar
  159. 159.
    C. Ferraro, S. Meille, J. Réthoré, N. Ni, J. Chevalier, and E. Saiz, Acta Mater. 144, 202 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2020

Authors and Affiliations

  1. 1.Biomaterials and Tissue Engineering Research Unit, School of Biomedical EngineeringThe University of SydneySydneyAustralia

Personalised recommendations