Advertisement

JOM

pp 1–9 | Cite as

Revealing the Strain Effect on Radiation Response of Amorphous–Crystalline Cu-Zr Laminate

  • Miaomiao JinEmail author
  • Penghui Cao
Mechanical Properties of Metastable Materials Containing Strong Disorder
  • 42 Downloads

Abstract

Nanocrystalline materials containing amorphous intergranular films (AIFs) exhibit excellent mechanical properties, radiation resistance, and thermal stability and may serve as promising candidate materials for use in advanced nuclear energy systems. The aim of this work is to reveal the effect of mechanical stress on the radiation damage behavior of AIF systems. Based on a bicrystal Cu system with Zr-doped AIFs, molecular dynamics is used to simulate the radiation process and examine the AIF sink efficiency, defect propensity, defect size distribution, and Zr mixing under uniaxial and hydrostatic strain conditions. The results show that the sink efficiency of the glue-like AIFs is not compromised under applied strains. The anisotropy resulting from the intrinsic microstructure and elastic deformation leads to a distinct radiation response, where extension (contraction) of the structure perpendicular to the AIFs increases (decreases) the vacancy density. The strain-dependent defect density, along with the cluster size distributions, can be interpreted based on the variations in the defect formation energy and anisotropic defect diffusion. Finally, the Zr mixing induced by collision cascades is found to be insensitive to the mechanical strains. These findings provide meaningful information towards understanding the stress effect on the radiation response of AIF systems.

Notes

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    G.S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys (Berlin: Springer, 2016).Google Scholar
  2. 2.
    D. Kaoumi, A. Motta, and R. Birtcher, J. Appl. Phys. 104, 073525 (2008).CrossRefGoogle Scholar
  3. 3.
    M. Jin, P. Cao, and M.P. Short, Scr. Mater. 163, 66 (2019).CrossRefGoogle Scholar
  4. 4.
    A. Khalajhedayati, Z. Pan, and T.J. Rupert, Nat. Commun. 7, 10802 (2016).CrossRefGoogle Scholar
  5. 5.
    Y. Wang, J. Li, A.V. Hamza, and T.W. Barbee, Proc. Natl. Acad. Sci. 104, 11155 (2007).CrossRefGoogle Scholar
  6. 6.
    P. Dubuisson, A. Maillard, C. Delalande, D. Gilbon, and J.L. Seran, Effects of Radiation on Materials the 15th International Symposium, STP 1125 (Philadelphia, PA: American Society for Testing and Materials, 1992), pp. 995–1014.Google Scholar
  7. 7.
    K. Kasama, F. Toyokawa, M. Tsukiji, M. Sakamoto, and K. Kobayashi, IEEE Trans. Nucl. Sci. 33, 1210 (1986).CrossRefGoogle Scholar
  8. 8.
    C. Xu and G.S. Was, J. Nucl. Mater. 454, 255 (2014).CrossRefGoogle Scholar
  9. 9.
    M. Cui, N. Gao, D. Wang, X. Gao, and Z. Wang, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 460, 60 (2019).CrossRefGoogle Scholar
  10. 10.
    A. Brailsford and R. Bullough, J. Nucl. Mater. 48, 87 (1973).CrossRefGoogle Scholar
  11. 11.
    B. Beeler, M. Asta, P. Hosemann, and N. Grønbech-Jensen, J. Nucl. Mater. 459, 159 (2015).CrossRefGoogle Scholar
  12. 12.
    S. Miyashiro, S. Fujita, and T. Okita, J. Nucl. Mater. 415, 1 (2011).CrossRefGoogle Scholar
  13. 13.
    F. Gao, D. Bacon, P. Flewitt, and T. Lewis, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 180, 187 (2001).CrossRefGoogle Scholar
  14. 14.
    S. Di, Z. Yao, M.R. Daymond, and F. Gao, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 303, 95 (2013).CrossRefGoogle Scholar
  15. 15.
    B. Beeler, M. Asta, P. Hosemann, and N. Grønbech-Jensen, J. Nucl. Mater. 474, 113 (2016).CrossRefGoogle Scholar
  16. 16.
    M.J. Banisalman and T. Oda, Comput. Mater. Sci. 158, 346 (2019).CrossRefGoogle Scholar
  17. 17.
    N. Gao, W. Setyawan, R.J. Kurtz, and Z. Wang, J. Nucl. Mater. 493, 62 (2017).CrossRefGoogle Scholar
  18. 18.
    C. Kang, Q. Wang, and L. Shao, J. Nucl. Mater. 485, 159 (2017).CrossRefGoogle Scholar
  19. 19.
    S. Plimpton, P. Crozier, and A. Thompson, LAMMPS-Large-Scale Atomic/Molecular Massively Parallel Simulator, Vol. 18 (Sandia National Laboratories, 2007), p. 43.Google Scholar
  20. 20.
    V. Borovikov, M.I. Mendelev, and A.H. King, Model. Simul. Mater. Sci. Eng. 24, 085017 (2016).CrossRefGoogle Scholar
  21. 21.
    J.F. Ziegler, J.P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Oxford: Pergamon, 1985).Google Scholar
  22. 22.
    K. Nordlund, M. Ghaly, R. Averback, M. Caturla, T.D. de La Rubia, and J. Tarus, Phys. Rev. B 57, 7556 (1998).CrossRefGoogle Scholar
  23. 23.
    A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2009).CrossRefGoogle Scholar
  24. 24.
    G. Henkelman, B.P. Uberuaga, and H. Jónsson, J. Chem. Phys. 113, 9901 (2000).CrossRefGoogle Scholar
  25. 25.
    S.J. Dillon, M. Tang, W.C. Carter, and M.P. Harmer, Acta Mater. 55, 6208 (2007).CrossRefGoogle Scholar
  26. 26.
    R. Averback, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 15, 675 (1986).CrossRefGoogle Scholar
  27. 27.
    H.A. Atwater, C.V. Thompson, and H.I. Smith, J. Appl. Phys. 64, 2337 (1988).CrossRefGoogle Scholar
  28. 28.
    P. Shewmon, Diffusion in Solids (Berlin: Springer, 2016).CrossRefGoogle Scholar
  29. 29.
    D. Wang, N. Gao, Z. Wang, X. Gao, W. He, M. Cui, L. Pang, and Y. Zhu, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 384, 68 (2016).CrossRefGoogle Scholar
  30. 30.
    W. Johnson, Y. Cheng, M. Van Rossum, and M. Nicolet, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 7, 657 (1985).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Nuclear Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Fuels Modeling and Simulation DepartmentIdaho National LaboratoryIdaho FallsUSA
  3. 3.Department of Mechanical and Aerospace EngineeringUniversity of California, IrvineIrvineUSA

Personalised recommendations