Advertisement

JOM

pp 1–5 | Cite as

Low-Cost Fabrication of Silicon Nanowires by Molten Salt Electrolysis and Their Electrochemical Performances as Lithium-Ion Battery Anodes

  • Yannan Zhang
  • Yingjie Zhang
  • Xue Li
  • Jiaming Liu
  • Mingyu Zhang
  • Xi Yang
  • Mengyang Huang
  • Mingli Xu
  • Peng DongEmail author
  • Zhongren ZhouEmail author
Electrochemical Energy Conversion and Storage
  • 34 Downloads

Abstract

The molten salt electrolytic method was introduced to prepare metallic silicon that simply utilizes SiO2 powder as the raw material and equimolar CaCl2-NaCl as the electrolyte under 1.8 V current at 700°C for 5 h. The electrochemically synthesized silicon was in the form of nanowire structures with average sizes of 90 nm in diameter and over 1 μm in length. The current efficiency and specific energy consumption of producing silicon nanowires were calculated to be 79.2% and 8.703 kWh/kg, respectively. Benefiting from the synthesized nanowire structure, the silicon anode exhibited a high initial discharge-specific capacity of 3348.1 mAh/g with an initial coulombic efficiency of 85.2%. The present research provides a straightforward idea to show the feasibility of synthesizing silicon-based material by the molten salt electrolytic method and to introduce the application of synthesized silicon nanowires to lithium-ion battery systems.

Notes

Acknowledgements

The authors acknowledge the financial support of the National Natural Science Foundation of China (Project Nos. 51804148, 51764029) and the Applied Basic Research Plan of Yunnan Province (No. 2018FD038).

References

  1. 1.
    H. Shang, Z. Zuo, L. Yu, F. Wang, F. He, and Y. Li, Adv. Mater. 30, 1801459 (2018).CrossRefGoogle Scholar
  2. 2.
    X. Su, Q. Wu, J. Li, X. Xiao, A. Lott, W. Lu, W.B. Sheldon, and J. Wu, Adv. Energy Mater. 4, 1300882 (2014).CrossRefGoogle Scholar
  3. 3.
    K. Feng, M. Li, W. Liu, A.G. Kashkooli, X. Xiao, M. Cai, and Z. Chen, Small 14, 1702737 (2018).CrossRefGoogle Scholar
  4. 4.
    I. Kang, J. Jang, K.W. Yi, and Y.W. Cho, J. Alloys Compd. 770, 369 (2019).CrossRefGoogle Scholar
  5. 5.
    X. Shen, Z. Tian, R. Fan, L. Shao, D. Zhang, G. Cao, L. Kou, and Y. Bai, J. Energy Chem. 27, 1067 (2018).CrossRefGoogle Scholar
  6. 6.
    A. Casimir, H. Zhang, O. Ogoke, C.J. Amine, J. Lu, and G. Wu, Nano Energy 27, 359 (2016).CrossRefGoogle Scholar
  7. 7.
    D.B. Polat, O. Keles, and K. Amine, J. Power Sources 304, 273 (2016).CrossRefGoogle Scholar
  8. 8.
    Z. Zhou, P. Dong, D. Wang, M. Liu, J. Duan, G.P. Nayaka, D. Wang, C. Xu, Y. Hua, and Y. Zhang, J. Alloys Compd. 781, 362 (2019).CrossRefGoogle Scholar
  9. 9.
    S. Zhou and D. Wang, ACS Nano 4, 7014 (2010).CrossRefGoogle Scholar
  10. 10.
    Q.C. Feng, S.M. Wen, X. Bai, W.H. Chang, C.F. Cui, and W.J. Zhao, Miner. Eng. 137, 1 (2019).CrossRefGoogle Scholar
  11. 11.
    W.J. Zhao, D.W. Liu, Q.C. Feng, S.M. Wen, and W.H. Chang, Miner. Eng. 141, 105846 (2019).CrossRefGoogle Scholar
  12. 12.
    C.K. Chan, H. Peng, G. Liu, K. Mcllwrath, X.F. Zhang, R.A. Huggins, and Y. Cui, Nat. Nanotechnol. 3, 31 (2008).CrossRefGoogle Scholar
  13. 13.
    Y. Nishimura, T. Nohira, K. Kobayashi, and R. Hagiwara, J. Electrochem. Soc. 158, E55 (2011).CrossRefGoogle Scholar
  14. 14.
    T. Oishi, K. Koyama, and M. Tanaka, J. Electrochem. Soc. 163, E385 (2016).CrossRefGoogle Scholar
  15. 15.
    J. Yang, S. Lu, S. Kan, X. Zhang, and J. Du, Chem. Commun. 22, 3273 (2009).CrossRefGoogle Scholar
  16. 16.
    Y. Dong, T. Slade, J.M. Stolt, L. Li, N.S. Girard, L. Mai, and S. Jin, Angew. Chem. Int. Ed. 56, 14453 (2017).CrossRefGoogle Scholar
  17. 17.
    W. Xiao, X. Wang, H. Yin, H. Zhu, X. Mao, and D. Wang, RSC Adv. 2, 7588 (2012).CrossRefGoogle Scholar
  18. 18.
    W. Xiao, J. Zhou, L. Yu, D. Wang, and X.W. Lou, Angew. Chem. Int. Ed. 55, 7427 (2016).CrossRefGoogle Scholar
  19. 19.
    Z. Zhou, Y. Zhang, Y. Hua, P. Dong, Y. Lin, M. Xu, D. Wang, X. Li, L. Han, and J. Duan, J. Alloys Compd. 751, 307 (2018).CrossRefGoogle Scholar
  20. 20.
    X. Zou, X. Lu, Z. Zhou, W. Xiao, Q. Zhong, C. Li, and W. Ding, J. Mater. Chem. A 2, 7421 (2014).CrossRefGoogle Scholar
  21. 21.
    X.Y. Yan and D.J. Fray, J. Electrochem. Soc. 152, E308 (2005).CrossRefGoogle Scholar
  22. 22.
    E. Ergül, I. Karakaya, and M. Erdoğan, J. Alloys Compd. 509, 899 (2011).CrossRefGoogle Scholar
  23. 23.
    W. Xiao, X. Jin, Y. Deng, D. Wang, and G.Z. Chen, Chem. Eur. J. 13, 604 (2007).CrossRefGoogle Scholar
  24. 24.
    W.J. Zhang, J. Power Sources 196, 13 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Yannan Zhang
    • 1
  • Yingjie Zhang
    • 1
  • Xue Li
    • 1
  • Jiaming Liu
    • 3
  • Mingyu Zhang
    • 2
  • Xi Yang
    • 2
  • Mengyang Huang
    • 2
  • Mingli Xu
    • 1
  • Peng Dong
    • 1
    • 6
    Email author
  • Zhongren Zhou
    • 1
    • 4
    • 5
    Email author
  1. 1.Faculty of Metallurgical and Energy EngineeringKunming University of Science and TechnologyKunmingPeople’s Republic of China
  2. 2.Yunnan Provincial Energy Investment Group Co. Ltd.KunmingPeople’s Republic of China
  3. 3.School of Metallurgy EngineeringJiangxi University of Science and TechnologyGanzhouPeople’s Republic of China
  4. 4.Faculty of Metallurgical and Energy EngineeringKunming University of Science and TechnologyKunmingPeople’s Republic of China
  5. 5.National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan ProvinceKunming University of Science and TechnologyKunmingPeople’s Republic of China
  6. 6.National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan ProvinceKunming University of Science and TechnologyKunmingPeople’s Republic of China

Personalised recommendations