Advertisement

JOM

pp 1–11 | Cite as

Estimating Powder-Polymer Material Properties Used in Design for Metal Fused Filament Fabrication (DfMF3)

  • Paramjot Singh
  • Qasim Shaikh
  • Vamsi K. Balla
  • Sundar V. Atre
  • Kunal H. KateEmail author
ICME-Based Design and Optimization of Materials for Additive Manufacturing
  • 102 Downloads

Abstract

Metal fused filament fabrication (MF3) combines fused filament fabrication and sintering processes to fabricate complex metal components. In MF3, powder-polymer mixtures are printed to produce green parts that are subsequently debound and sintered. In the design for MF3 (DfMF3), it is important to understand how material properties of the filament affect processability, part quality, and ensuing properties. However, the materials property database of powder-polymer materials to perform DfMF3 simulations is very limited, and experimental measurements can be expensive and time-consuming. This work investigates models that can predict the powder-polymer material properties that are required as input parameters for simulating the MF3 using the Digimat-AM® process design platform for fused filament fabrication. Ti-6Al-4V alloy (56–60 vol.%) and a multicomponent polymer binder were used to predict properties such as density, specific heat, thermal conductivity, Young’s modulus, and viscosity. The estimated material properties were used to conduct DfMF3 simulations to understand material-processing-geometry interactions.

Notes

Acknowledgement

The authors acknowledge financial assistance from the Minority Business Development Agency of the US Department of Commerce as well as NASA through a subcontract from Techshot. The authors also acknowledge MSC Software, AlphaSTAR, and Vanderplaats R&D for their support in providing AM software platforms.

Supplementary material

11837_2019_3920_MOESM1_ESM.pdf (455 kb)
Supplementary material 1 (PDF 454 kb)

References

  1. 1.
    J. Gonzalez-Gutierrez, S. Cano, S. Schuschnigg, C. Kukla, J. Sapkota, and C. Holzer, Materials 11, 840 (2018).CrossRefGoogle Scholar
  2. 2.
    R.M. German, Injection molding of metals and ceramics, 1st ed. (Princeton: Metal Powder Industries Federation, 1997), pp. 83–98.Google Scholar
  3. 3.
    S. Rangarajan, G. Qi, N. Venkataraman, A. Safari, and S.C. Danforth, J. Am. Ceram. Soc. 83, 1663 (2000).CrossRefGoogle Scholar
  4. 4.
    G. Wu, N.A. Langrana, R. Sadanji, and S. Danforth, Mater. Des. 23, 97 (2002).CrossRefGoogle Scholar
  5. 5.
    W. Lengauer, I. Duretek, M. Fürst, V. Schwarz, J. Gonzalez-Gutierrez, S. Schuschnigg, C. Kukla, M. Kitzmantel, E. Neubauer, and C. Lieberwirth, Int. J. Refract. Met. Hard Mater. 82, 141 (2019).CrossRefGoogle Scholar
  6. 6.
    S. Masood and W. Song, Mater. Des. 25, 587 (2004).CrossRefGoogle Scholar
  7. 7.
    M. Nikzad, S. Masood, and I. Sbarski, Mater. Des. 32, 3448 (2011).CrossRefGoogle Scholar
  8. 8.
    D.A. Anderegg, H.A. Bryant, D.C. Ruffin, S.M. Skrip Jr, J.J. Fallon, E.L. Gilmer, and M.J. Bortner, Addit. Manuf. 26, 76 (2019).CrossRefGoogle Scholar
  9. 9.
    M.K. Agarwala, V.R. Jamalabad, N.A. Langrana, A. Safari, P.J. Whalen, and S.C. Danforth, Rapid Prototyp. J. 2, 4 (1996).CrossRefGoogle Scholar
  10. 10.
    A. Bose, C.A. Schuh, J.C. Tobia, N. Tuncer, N.M. Mykulowycz, A. Preston, A.C. Barbati, B. Kernan, M.A. Gibson, and D. Krause, Int. J. Refract. Met. Hard Mater. 73, 22 (2018).CrossRefGoogle Scholar
  11. 11.
    J. Gonzalez-Gutierrez, F. Arbeiter, T. Schlauf, C. Kukla, and C. Holzer, Mater. Lett. 248, 165 (2019).CrossRefGoogle Scholar
  12. 12.
    B. Barmore, Fused Filament Fabrication of Filled Polymers for Metal Additive Manufacturing. Master’s Thesis (Mechanical Engineering, Oregon State University, 2016), pp. 55–60.Google Scholar
  13. 13.
    L. Ren, X. Zhou, Z. Song, C. Zhao, Q. Liu, J. Xue, and X. Li, Materials 10, 305 (2017).CrossRefGoogle Scholar
  14. 14.
    e-xstream, Digimat-AM simulation solution for Additive Manufacturing. https://www.e-xstream.com/product/digimat-am. Accessed 30 July 2019.
  15. 15.
    Alphastar, Genoa Additive Manufacturing design tool and software suite for polymers, metals and ceramics. http://www.alphastarcorp.com/products/genoa-3dp-simulation/. Accessed 30 July 2019.
  16. 16.
    Vanderplaats, Genesis structural analysis and optimization software. http://www.vrand.com/products/genesis/. Accessed 30 July 2019.
  17. 17.
    L.E. Nielsen, Predicting the Properties of Mixtures, 1st ed. (New York: M. Dekker, 1978), pp. 5–11.Google Scholar
  18. 18.
    S. McGee and R. McGullough, Polym. Compos. 2, 149 (1981).CrossRefGoogle Scholar
  19. 19.
    W. Wu, K. Sadeghipour, K. Boberick, and G. Baran, Mater. Sci. Eng. A 332, 362 (2002).CrossRefGoogle Scholar
  20. 20.
    T.J. Wooster, S. Abrol, J.M. Hey, and D.R. MacFarlane, Compos. Part A 35, 75 (2004).CrossRefGoogle Scholar
  21. 21.
    I. Balać, M. Milovančević, C.-Y. Tang, P.S. Uskoković, and D.P. Uskoković, Mater. Lett. 58, 2437 (2004).CrossRefGoogle Scholar
  22. 22.
    Y.P. Mamunya, V. Davydenko, P. Pissis, and E. Lebedev, Eur. Polym. J. 38, 1887 (2002).CrossRefGoogle Scholar
  23. 23.
    L. Kowalski, J. Duszczyk, and L. Katgerman, J. Mater. Sci. 34, 1 (1999).CrossRefGoogle Scholar
  24. 24.
    A. Boudenne, L. Ibos, M. Fois, E. Gehin, and J.C. Majeste, J. Polym. Sci. Part B Polym. Phys. 42, 722 (2004).CrossRefGoogle Scholar
  25. 25.
    T. Zhang, J. Evans, and K. Dutta, J. Eur. Ceram. Soc. 5, 303 (1989).CrossRefGoogle Scholar
  26. 26.
    K.H. Kate, R.K. Enneti, S.-J. Park, R.M. German, and S.V. Atre, Crit. Rev. Solid State Mater. Sci. 39, 197 (2014).CrossRefGoogle Scholar
  27. 27.
    K.H. Kate, R.K. Enneti, V.P. Onbattuvelli, and S.V. Atre, Ceram. Int. 39, 6887 (2013).CrossRefGoogle Scholar
  28. 28.
    K.H. Kate, V.P. Onbattuvelli, R.K. Enneti, S.W. Lee, S.J. Park, and S.V. Atre, JOM 64, 1048 (2012).CrossRefGoogle Scholar
  29. 29.
    K.H. Kate, R.K. Enneti, T. McCabe, and S.V. Atre, Ceram. Int. 42, 194 (2016).CrossRefGoogle Scholar
  30. 30.
    N.M. Nor, N. Muhamad, M. Ibrahim, M. Ruzi, and K. Jamaludin, Int. J. Mech. Mater. Eng. 6, 126 (2011).Google Scholar
  31. 31.
    G. Shibo, Q. Xuanhui, H. Xinbo, Z. Ting, and D. Bohua, J. Mater. Process. Technol. 173, 310 (2006).CrossRefGoogle Scholar
  32. 32.
    G. Obasi, O. Ferri, T. Ebel, and R. Bormann, Mater. Sci. Eng. A 527, 3929 (2010).CrossRefGoogle Scholar
  33. 33.
    E. Ergül, H. Özkan Gülsoy, and V. Günay, Powder Metall. 52, 65 (2009).CrossRefGoogle Scholar
  34. 34.
    H.Ö. Gülsoy, N. Gülsoy, and R. Calışıcı, Bio-Med. Mater. Eng. 24, 1861 (2014).Google Scholar
  35. 35.
    K.C. Mills, Recommended Values of Thermophysical Properties for Selected Commercial Alloys (Cambridge: Woodhead Publishing, 2002), pp. 211–215.CrossRefGoogle Scholar
  36. 36.
    G. Welsch, R. Boyer, and E. Collings, Materials Properties Handbook: Titanium Alloys (Ohio: ASM International, 1993), pp. 514–520.Google Scholar
  37. 37.
    R. Enneti, V. Onbattuvelli, O. Gulsoy, K. Kate, and S. Atre, Powder-Binder Formulation and Compound Manufacture in Metal Injection Molding (MIM). Handbook of Metal Injection Molding, 2nd ed. (Cambridge: Woodhead Publishing, 2002), pp. 57–88.Google Scholar
  38. 38.
    G. Chen, C. Ren, X. Yang, X. Jin, and T. Guo, Int. J. Adv. Manuf. Technol. 56, 1027 (2011).CrossRefGoogle Scholar
  39. 39.
    C.J. Smithells, Metals Reference Book, 5th ed. (Oxford: Butterworth Publishing, 1976), pp. 1148–1152.Google Scholar
  40. 40.
    V. Wagner, M. Baili, G. Dessein, and D. Lallement, Key Eng. Mater. 446, 147 (2010).CrossRefGoogle Scholar
  41. 41.
    J. Elmer, T. Palmer, S. Babu, and E. Specht, Mater. Sci. Eng. A 391, 104 (2005).CrossRefGoogle Scholar
  42. 42.
    R. Rai, J. Elmer, T. Palmer, and T. DebRoy, J. Phys. D Appl. Phys. 40, 5753 (2007).CrossRefGoogle Scholar
  43. 43.
    M. Niinomi, Mater. Sci. Eng. A 243, 231 (1998).CrossRefGoogle Scholar
  44. 44.
    Y. Lee and G. Welsch, Mater. Sci. Eng. A 128, 77 (1990).CrossRefGoogle Scholar
  45. 45.
    Y.P. Wu, Q.-X. Jia, D.-S. Yu, and L.-Q. Zhang, Polym. Test. 23, 903 (2004).CrossRefGoogle Scholar
  46. 46.
    C.L. Tucker and E. Liang, Compos. Sci. Technol. 59, 655 (1999).CrossRefGoogle Scholar
  47. 47.
    C. Wong and R.S. Bollampally, J. Appl. Polym. Sci. 74, 3396 (1999).CrossRefGoogle Scholar
  48. 48.
    A. Metzner, J. Rheol. 29, 739 (1985).CrossRefGoogle Scholar
  49. 49.
    R.M. German, J. Am. Ceram. Soc. 77, 283 (1994).MathSciNetCrossRefGoogle Scholar
  50. 50.
    H. Chiang, C. Hieber, and K. Wang, Polym. Eng. Sci. 31, 116 (1991).CrossRefGoogle Scholar
  51. 51.
    A.H. Peng, Adv. Mater. Res. 538–541, 1564 (2012).CrossRefGoogle Scholar
  52. 52.
    B.N. Turner and S.A. Gold, Rapid Prototyp. J. 21, 250 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Materials Innovation GuildUniversity of LouisvilleLouisvilleUSA
  2. 2.CSIR-Central Glass and Ceramic Research InstituteKolkataIndia

Personalised recommendations