Advertisement

JOM

pp 1–11 | Cite as

Decrease of Material Burden in a Novel Alkali-Saving Reduction Treatment Process of Nickel Slag Based on NaOH Roasting

  • Hai-yang Liu
  • Nan XiangEmail author
  • Xiao-yi Shen
  • Yu-chun Zhai
  • Chao Han
Recycling Silicon and Silicon Compounds
  • 40 Downloads

Abstract

Conventional reduction treatment methods for nickel slag show drawbacks such as high energy cost, heavy material burden or secondary pollution. Thus, a novel environmentally friendly reduction treatment method for high-silicon wastes, especially nickel slag, is proposed in this paper. The main characteristic is to lower the alkali–ore ratio (mass ratio of NaOH to ore) through introducing a high-speed premixing procedure before roasting. Optimal process parameters have been found experimentally, i.e., a roasting temperature of 823 K, alkali–ore ratio of 1.6:1, and roasting time of 30 min. The desilication ratio reached to 91.3 wt.%. Compared with previous NaOH roasting processes with stirring, the NaOH consumption is down by 60%, which greatly reduces the material burden. Through carbonation decomposition of the Na2SiO3 solution generated in the NaOH roasting, amorphous silica is recycled as the final product. The proposed method is expected to be a promising method for industrial reduction treatment of nickel slag.

Notes

Acknowledgements

The presented investigations have been supported by the National Basic Research Program of China (Grant No. 2007CB613603) and Project supported by National Natural Science Foundation of China (Grant No. 51774070). The authors kindly acknowledge these supports.

Supplementary material

11837_2019_3914_MOESM1_ESM.pdf (363 kb)
Supplementary material 1 (PDF 362 kb)

References

  1. 1.
    Y.J. Gao, H.J. Huang, W.J. Tang, X.Y. Liu, X.Y. Yang, and J.B. Zhang, Microporous Mesoporous Mater. 217, 210 (2015).CrossRefGoogle Scholar
  2. 2.
    J. Yang, X. Zhang, Y.Q. Liu, H.W. Ma, W.W. Feng, and C. Zeng, Integr. Ferroelectr. 161, 10 (2015).CrossRefGoogle Scholar
  3. 3.
    W.N. Mu, X.Y. Lu, F.H. Cui, S.H. Luo, and Y.C. Zhai, Trans. Nonferr. Met. Soc. Chin 28, 169 (2018).CrossRefGoogle Scholar
  4. 4.
    W.N. Mu, Doctoral dissertation (Northeastern University, 2009) (in Chinese).Google Scholar
  5. 5.
    C. Li and X. Qiao, Chem. Eng. J. 302, 388 (2016).CrossRefGoogle Scholar
  6. 6.
    M. Iwao, M. Okuno, M. Koyano, and S. Katayama, J. Mineral. Petrol. Sci. 105, 135 (2010).CrossRefGoogle Scholar
  7. 7.
    Y.C. Li, X.B. Min, Y. Ke, D.G. Liu, and C.J. Tang, Waste Manag 83, 202 (2019).CrossRefGoogle Scholar
  8. 8.
    Y.B. Li, Z.M. Li, B. Wang, Z.M. Dong, and S.X. Song, Miner. Eng. 131, 376 (2019).CrossRefGoogle Scholar
  9. 9.
    T.C. Alex, P. Kumar, S.K. Roy, and S.P. Mehrotra, Miner. Process. Extr. Metall. Rev. 37, 1 (2016).CrossRefGoogle Scholar
  10. 10.
    A. Fedoročková, P. Raschman, G. Sučik, B. Plesingerová, Ľ. Popoviĉ, and J. Briančin, Ceram. -Silik. 59, 275 (2015).Google Scholar
  11. 11.
    P.L. Zhang, Z.F. Liu, T.X. Liu, and Z.Q. Li, Eur. J. Inorg. Chem. 32, 5577 (2014).CrossRefGoogle Scholar
  12. 12.
    C.C. Li and X.C. Qia, Chem. Eng. J. 302, 388 (2017).CrossRefGoogle Scholar
  13. 13.
    H.W. Guo, J. Wang, X.X. Zhang, F. Zheng, and P. Li, Metall. Mater. Trans. B 49, 2906 (2018).CrossRefGoogle Scholar
  14. 14.
    G.Z. Lu, T.G. Zhang, C. Cheng, W.G. Zhang, L. Wang, Y.X. Wang, and Z.M. Zhang, Mater. Res. Express. 6, 6 (2019).Google Scholar
  15. 15.
    N.K. Mermer, M.S. Yilmaz, O.D. Oademir, and M.B. Piskin, J. Therm. Anal. Calorim. 129, 1807 (2017).CrossRefGoogle Scholar
  16. 16.
    K.Z. Yan, Y.X. Guo, D.D. Liu, Z.B. Ma, and F.Q. Cheng, J. Solid State Chem. 265, 326 (2018).CrossRefGoogle Scholar
  17. 17.
    J.N. Liu, X.Y. Shen, Y. Wu, J. Zhang, and Y.C. Zhai, Int. J. Miner. Metall. Mater. 23, 966 (2016).CrossRefGoogle Scholar
  18. 18.
    A. Kongnoo, S. Tontisirin, P. Worathanakul, and C. Phalakomkule, Fuel 193, 385 (2017).CrossRefGoogle Scholar
  19. 19.
    P.F. Fu, T.W. Yang, J. Feng, and H.F. Yang, J. Ind. Eng. Chem. 29, 338 (2015).CrossRefGoogle Scholar
  20. 20.
    H. Du, L. Ma, X.Y. Liu, F. Zhang, X.Y. Yang, Y. Wu, and J.B. Zhang, Energy Fuels 32, 5374 (2018).CrossRefGoogle Scholar
  21. 21.
    S.Q. Zhang, S. Ravi, Y.R. Lee, J.W. Ahn, and W.S. Ahn, J. Ind. Eng. Chem. 72, 241 (2018).CrossRefGoogle Scholar
  22. 22.
    W. Chansiriwat, D. Tanangteerapong, and K. Wantala, Sains Malaysiana 45, 1723 (2016).Google Scholar
  23. 23.
    C. Belviso, L.C. Giannossa, F.G. Huertas, A. Lettino, A. Mangone, and S. Fiore, Microporos Mesoporous Mater. 212, 35 (2015).CrossRefGoogle Scholar
  24. 24.
    X.D. Wu, M.H. Fan, J.F. Mclaughlin, X.D. Shen, and G. Tan, Powder Technol. 323, 310 (2018).CrossRefGoogle Scholar
  25. 25.
    Y. Cheng, M.S. Xia, F. Luo, N. Li, C.B. Guo, and C.D. Wei, Colloids Surf. A 490, 200 (2016).CrossRefGoogle Scholar
  26. 26.
    W.B. Hu, M.M. Li, W. Chen, N. Zhang, B. Li, M. Wang, and Z.M. Zhao, Colloids Surf. A 501, 83 (2016).CrossRefGoogle Scholar
  27. 27.
    C.L. Liu, S.L. Zheng, S.H. Ma, Y. Luo, J. Ding, X.H. Wang, and Y. Zhang, Fuel Process. Technol. 173, 40 (2018).CrossRefGoogle Scholar
  28. 28.
    J. Baek, Y. Jo, J. Lee, S. Choi, and H. Jeong, J. Nanosci. Nanotechnol. 17, 2610 (2017).CrossRefGoogle Scholar
  29. 29.
    A. Fedorockova, P. Raschman, G. Sucik, B. Plesingerova, L. Popovic, and J. Briancin, Ceram.-Silik. 59, 275 (2015).Google Scholar
  30. 30.
    S. Parirenyatwa, L. Escudero-Castejon, S. Sanchez-Segado, Y. Hara, and A. Jha, Hydrometallurgy 165, 213 (2016).CrossRefGoogle Scholar
  31. 31.
    H. Wang, Q.M. Feng, X.K. Tang, and K. Liu, Sep. Sci. Technol. 51, 2465 (2016).CrossRefGoogle Scholar
  32. 32.
    X.Y. Deng, Y.L. Feng, H.R. Li, Z.W. Du, J.X. Kang, and C.L. Guo, Trans. Nonferr. Met. Soc. Chin 28, 1045 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Hai-yang Liu
    • 1
    • 2
  • Nan Xiang
    • 2
    Email author
  • Xiao-yi Shen
    • 1
  • Yu-chun Zhai
    • 1
  • Chao Han
    • 2
  1. 1.School of MetallurgyNortheastern UniversityShenyangChina
  2. 2.School of Materials Science and EngineeringHenan University of Science and TechnologyLuoyangChina

Personalised recommendations