Advertisement

JOM

pp 1–17 | Cite as

Review on Computational Modeling of Process–Microstructure–Property Relationships in Metal Additive Manufacturing

  • Theofilos Gatsos
  • Karim A. ElsayedEmail author
  • Yuwei Zhai
  • Diana A. Lados
ICME-Based Design and Optimization of Materials for Additive Manufacturing
  • 196 Downloads

Abstract

Metal additive manufacturing (AM) is an emerging technology with great potential for the fabrication of components with highly complex shapes at low cost. Its broad implementation, especially in safety-critical structural and high temperature applications, relies on the ability to produce AM parts with suitable and consistent mechanical properties. Current research indicates that computational modeling of the complex physical phenomena involved in AM can lead to shorter production times and less expensive material/component manufacturing, while simultaneously improving the residual stress distribution, distortion, microstructure, and porosity. These structural characteristics influence the mechanical properties of AM components, and the relationships between them must be identified to meet design specifications. This review organizes current research efforts described in literature and provides a systematic summary of available modeling techniques related to the simulation/prediction of process–microstructure–property relationships for AM-fabricated materials.

Notes

References

  1. 1.
    M. Gouge and P. Michaleris, Thermo-Mechanical Modeling of Additive Manufacturing, ed. M. Gouge and P. Michaleris (Amsterdam: Elsevier, 2018), p. 3.CrossRefGoogle Scholar
  2. 2.
    G.N. Levy, R. Schindel, and J. Kruth, CIRP Ann. 52, 589 (2003).CrossRefGoogle Scholar
  3. 3.
    J. Kruth, M. Leu, and T. Nakagawa, CIRP Ann. 47, 525 (1998).CrossRefGoogle Scholar
  4. 4.
    D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, Int. Mater. Rev. 57, 133 (2012).CrossRefGoogle Scholar
  5. 5.
    M.M. Francois, A. Sun, W.E. King, N.J. Henson, D. Tourret, C.A. Bronkhorst, N.N. Carlson, C.K. Newman, T.S. Haut, and J. Bakosi, Curr. Opin. Solid State Mater. Sci. (2017).  https://doi.org/10.1016/j.cossms.2016.12.001.CrossRefGoogle Scholar
  6. 6.
    S. Gorsse, C. Hutchinson, M. Gouné, and R. Banerjee, Sci. Technol. Adv. Mater. 18, 584 (2017).CrossRefGoogle Scholar
  7. 7.
    E.R. Denlinger, J.C. Heigel, and P. Michaleris, Proc. Inst. Mech. Eng. Pt. B: J. Eng. Manuf. 229, 1803 (2015).CrossRefGoogle Scholar
  8. 8.
    M. Shiomi, K. Osakada, K. Nakamura, T. Yamashita, and F. Abe, CIRP Ann. 53, 195 (2004).CrossRefGoogle Scholar
  9. 9.
    W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C.B. Williams, C.C. Wang, Y.C. Shin, S. Zhang, and P.D. Zavattieri, Comput. Aided Des. 69, 65 (2015).CrossRefGoogle Scholar
  10. 10.
    E. Louvis, P. Fox, and C.J. Sutcliffe, J. Mater. Process. Technol. 211, 275 (2011).CrossRefGoogle Scholar
  11. 11.
    Y. Zhai, D.A. Lados, E.J. Brown, and G.N. Vigilante, Int. J. Fatigue 93, 51 (2016).CrossRefGoogle Scholar
  12. 12.
    Y. Zhai, D.A. Lados, E.J. Brown, and G.N. Vigilante, Addit. Manuf. 27, 334 (2019).CrossRefGoogle Scholar
  13. 13.
    P. Michaleris, Finite Elem. Anal. Des. 86, 51 (2014).CrossRefGoogle Scholar
  14. 14.
    J.A. Goldak and M. Akhlaghi, Computational Welding Mechanics (Berlin: Springer, 2006), pp. 16–115.Google Scholar
  15. 15.
    D.Q. Zhang, Q.Z. Cai, J.H. Liu, L. Zhang, and R.D. Li, Int. J. Adv. Manuf. Technol. 51, 649 (2010).CrossRefGoogle Scholar
  16. 16.
    A. Hussein, L. Hao, C. Yan, and R. Everson, Mater. Des. 52, 638 (2013).CrossRefGoogle Scholar
  17. 17.
    I.A. Roberts, C.J. Wang, R. Esterlein, M. Stanford, and D.J. Mynors, Int. J. Mach. Tools Manuf 49, 916 (2009).CrossRefGoogle Scholar
  18. 18.
    M. Van Elsen, M. Baelmans, P. Mercelis, and J. Kruth, Int. J. Heat Mass Transf. 50, 4872 (2007).CrossRefGoogle Scholar
  19. 19.
    S. Kolossov, E. Boillat, R. Glardon, P. Fischer, and M. Locher, Int. J. Mach. Tools Manuf 44, 117 (2004).CrossRefGoogle Scholar
  20. 20.
    R.B. Patil and V. Yadava, Int. J. Mach. Tools Manuf 47, 1069 (2007).CrossRefGoogle Scholar
  21. 21.
    M. Matsumoto, M. Shiomi, K. Osakada, and F. Abe, Int. J. Mach. Tools Manuf 42, 61 (2002).CrossRefGoogle Scholar
  22. 22.
    J. Yin, H. Zhu, L. Ke, W. Lei, C. Dai, and D. Zuo, Comput. Mater. Sci. 53, 333 (2012).CrossRefGoogle Scholar
  23. 23.
    K. Dai and L. Shaw, Acta Mater. 52, 69 (2004).CrossRefGoogle Scholar
  24. 24.
    E.R. Denlinger, Thermo-Mechanical Modeling of Additive Manufacturing, ed. M. Gouge and P. Michaleris (Amsterdam: Elsevier, 2018), p. 167.CrossRefGoogle Scholar
  25. 25.
    M. Gouge, P. Michaleris, E. Denlinger, and J. Irwin, Thermo-Mechanical Modeling of Additive Manufacturing, ed. M. Gouge and P. Michaleris (Amsterdam: Elsevier, 2018), p. 19.CrossRefGoogle Scholar
  26. 26.
    J. Goldak, A. Chakravarti, and M. Bibby, Metall. Trans. B 15, 299 (1984).CrossRefGoogle Scholar
  27. 27.
    S.A. Khairallah, A.T. Anderson, A. Rubenchik, and W.E. King, Acta Mater. 108, 36 (2016).CrossRefGoogle Scholar
  28. 28.
    J. Song, J.Y. Shanghvi, and P. Michaleris, Comput. Methods Appl. Mech. Eng. 193, 4541 (2004).CrossRefGoogle Scholar
  29. 29.
    M. Shiomi, A. Yoshidome, F. Abe, and K. Osakada, Int. J. Mach. Tools Manuf 39, 237 (1999).CrossRefGoogle Scholar
  30. 30.
    L. Loh, C. Chua, W. Yeong, J. Song, M. Mapar, S. Sing, Z. Liu, and D. Zhang, Int. J. Heat Mass Transfer. 80, 288 (2015).CrossRefGoogle Scholar
  31. 31.
    B. Song, S. Dong, H. Liao, and C. Coddet, Int. J. Adv. Manuf. Technol. 61, 967 (2012).CrossRefGoogle Scholar
  32. 32.
    D. Hu and R. Kovacevic, Int. J. Mach. Tools Manuf 43, 51 (2003).CrossRefGoogle Scholar
  33. 33.
    G. Campoli, M.S. Borleffs, S.A. Yavari, R. Wauthle, H. Weinans, and A.A. Zadpoor, Mater. Des. 49, 957 (2013).CrossRefGoogle Scholar
  34. 34.
    Y. Li and D. Gu, Mater. Des. 63, 856 (2014).CrossRefGoogle Scholar
  35. 35.
    R. Paul, S. Anand, and F. Gerner, J. Manuf. Sci. 136, 031009 (2014).CrossRefGoogle Scholar
  36. 36.
    N. Patil, D. Pal, and B.E. Stucker, Proceedings of the Solid Freeform Fabrication Symposium (2013).Google Scholar
  37. 37.
    J.C. Heigel, P. Michaleris, and E.W. Reutzel, Addit. Manuf. 5, 9 (2015).CrossRefGoogle Scholar
  38. 38.
    J. Ding, P. Colegrove, J. Mehnen, S. Williams, F. Wang, and P.S. Almeida, Int. J. Adv. Manuf. Technol. 70, 227 (2014).CrossRefGoogle Scholar
  39. 39.
    D. Hu and R. Kovacevic, Proc. Inst. Mech. Eng. Pt. B: J. Eng. Manuf. 217, 441 (2003).CrossRefGoogle Scholar
  40. 40.
    N. Contuzzi, S.L. Campanelli, and A.D. Ludovico, Int. J. Simul. Model. 10, 113 (2011).CrossRefGoogle Scholar
  41. 41.
    S. Park, D.W. Rosen, S. Choi, and C.E. Duty, Addit. Manuf. 1, 12 (2014).CrossRefGoogle Scholar
  42. 42.
    Q. Yang, P. Zhang, L. Cheng, Z. Min, M. Chyu, and A.C. To, Addit. Manuf. 12, 169 (2016).CrossRefGoogle Scholar
  43. 43.
    J. Ding, P. Colegrove, J. Mehnen, S. Ganguly, P.S. Almeida, F. Wang, and S. Williams, Comput. Mater. Sci. 50, 3315 (2011).CrossRefGoogle Scholar
  44. 44.
    E. Soylemez, J.L. Beuth, and K. Taminger, Proceedings of 21st Solid Freeform Fabrication Symposium, 9 (2010).Google Scholar
  45. 45.
    L. Lindgren, H. Runnemalm, and M.O. Näsström, Int. J. Numer. Methods Eng. 44, 1301 (1999).CrossRefGoogle Scholar
  46. 46.
    G. Vastola, G. Zhang, Q.X. Pei, and Y. Zhang, Addit. Manuf. 12, 231 (2016).CrossRefGoogle Scholar
  47. 47.
    R. Martukanitz, P. Michaleris, T. Palmer, T. DebRoy, Z. Liu, R. Otis, T.W. Heo, and L. Chen, Addit. Manuf. 1, 52 (2014).CrossRefGoogle Scholar
  48. 48.
    P. Nie, O.A. Ojo, and Z. Li, Acta Mater. 77, 85 (2014).CrossRefGoogle Scholar
  49. 49.
    B. Schoinochoritis, D. Chantzis, and K. Salonitis, Proc. Inst. Mech. Eng. Pt. B: J. Eng. Manuf. 231, 96 (2017).CrossRefGoogle Scholar
  50. 50.
    Y.S. Lee and W. Zhang, in International Solid Free Form Fabrication Symposium, 1154 (2015).Google Scholar
  51. 51.
    G. Tapia, S. Khairallah, M. Matthews, W.E. King, and A. Elwany, Int. J. Adv. Manuf. Technol. 94, 3591 (2018).CrossRefGoogle Scholar
  52. 52.
    Z. Wang, P. Liu, Y. Xiao, X. Cui, Z. Hu, and L. Chen, J. Manuf. Sci. Eng. 141, 081004 (2019).CrossRefGoogle Scholar
  53. 53.
    E.R. Denlinger, J. Irwin, and P. Michaleris, J. Manuf. Sci. Eng. 136, 061007 (2014).CrossRefGoogle Scholar
  54. 54.
    L. Lindgren, A. Lundbäck, M. Fisk, R. Pederson, and J. Andersson, Addit. Manuf. 12, 144 (2016).CrossRefGoogle Scholar
  55. 55.
    A.P. Mackwood and R.C. Crafer, Opt. Laser Technol. 37, 99 (2005).CrossRefGoogle Scholar
  56. 56.
    L. Van Belle, G. Vansteenkiste, and J.C. Boyer, Key Eng. Mater. 504, 1067 (2012).CrossRefGoogle Scholar
  57. 57.
    P. Bai, J. Cheng, L. Bin, and W. Wang, Trans. Nonferrous Met. Soc. China 16, s603 (2006).CrossRefGoogle Scholar
  58. 58.
    T. Childs, C. Hauser, C.M. Taylor, and A.E. Tontowi, in Proceedings of the 11th Solid Freedom Fabrication Symposium, 100 (2000).Google Scholar
  59. 59.
    I.A. Badruddin, Z.A. Zainal, P.A. Narayana, and K.N. Seetharamu, Int. J. Heat Mass Transf. 49, 4955 (2006).CrossRefGoogle Scholar
  60. 60.
    M. Gouge, Thermo-Mechanical Modeling of Additive Manufacturing, ed. M. Gouge and E. Michaleris (Amsterdam: Elsevier, 2018), p. 41.CrossRefGoogle Scholar
  61. 61.
    N.R. Saad, W. Douglas, and A.S. Mujumdar, Ind. Eng. Chem. Fund. 16, 148 (1977).CrossRefGoogle Scholar
  62. 62.
    M. Gouge, Thermo-Mechanical Modeling of Additive Manufacturing, ed. M. Gouge and P. Michaleris (Amsterdam: Elsevier, 2018), p. 61.CrossRefGoogle Scholar
  63. 63.
    D. Rosenthal, Trans. ASME 68, 849 (1946).Google Scholar
  64. 64.
    V. Pavelic, R. Tanbakuchi, and O.A. Uyehara, Weld J. 48, 295 (1969).Google Scholar
  65. 65.
    C.D. Boley, S.A. Khairallah, and A.M. Rubenchik, Appl. Opt. 54, 2477 (2015).CrossRefGoogle Scholar
  66. 66.
    D. Bergström, J. Powell, and A. Kaplan, J. Appl. Phys. 103, 103515 (2008).CrossRefGoogle Scholar
  67. 67.
    W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, C. Kamath, and A.M. Rubenchik, J. Mater. Process. Technol. 214, 2915 (2014).CrossRefGoogle Scholar
  68. 68.
    M. Boivineau, C. Cagran, D. Doytier, V. Eyraud, M. Nadal, B. Wilthan, and G. Pottlacher, Int. J. Thermophys. 27, 507 (2006).CrossRefGoogle Scholar
  69. 69.
    T. Ahmed and H.J. Rack, Mater. Sci. Eng. 243, 206 (1998).CrossRefGoogle Scholar
  70. 70.
    S.M. Kelly and S.L. Kampe, Metall. Mater. Trans. A 35, 1869 (2004).CrossRefGoogle Scholar
  71. 71.
    F. Wang, S. Williams, P. Colegrove, and A.A. Antonysamy, Metall. Mater. Trans. A 44, 968 (2013).CrossRefGoogle Scholar
  72. 72.
    R.W. Lewis, K. Morgan, H.R. Thomas, and K.N. Seetharamu, The Finite Element Method in Heat Transfer Analysis (Hoboken: Wiley, 1996), pp. 123–130.zbMATHGoogle Scholar
  73. 73.
    Z. Fan and F. Liou, Titanium Alloys-Towards Achieving Enhanced Properties for Diversified Applications, ed. A.K.M. Nurulamin (Croatia: InTech, 2012), p. 3.Google Scholar
  74. 74.
    M. Galati, L. Iuliano, A. Salmi, and E. Atzeni, Addit. Manuf. 14, 49 (2017).CrossRefGoogle Scholar
  75. 75.
    B. Nedjar, Comput. Struct. 80, 9 (2002).CrossRefGoogle Scholar
  76. 76.
    T. Keller, G. Lindwall, S. Ghosh, L. Ma, B.M. Lane, F. Zhang, U.R. Kattner, E.A. Lass, J.C. Heigel, and Y. Idell, Acta Mater. 139, 244 (2017).CrossRefGoogle Scholar
  77. 77.
    Z. Wang, E. Denlinger, P. Michaleris, A.D. Stoica, D. Ma, and A.M. Beese, Mater. Des. 113, 169 (2017).CrossRefGoogle Scholar
  78. 78.
    O. Desmaison, P.A. Pires, G. Levesque, A. Peralta, S. Sundarraj, A. Makinde, V. Jagdale, and M. Megahed, Proceedings of the 4th World Congress on Integrated Computational Materials Engineering, ed. P. Mason, C.R. Fisher, R. Glamm, M.V. Manuel, G.J. Schmitz, A.K. Singh, and A. Strachan (Berlin: Springer, 2017), p. 365.Google Scholar
  79. 79.
    T. Mukherjee, W. Zhang, and T. DebRoy, Comput. Mater. Sci. 126, 360 (2017).CrossRefGoogle Scholar
  80. 80.
    J.C. Heigel, Thermo-Mechanical Modeling of Additive Manufacturing, ed. M. Gouge and P. Michaleris (Amsterdam: Elsevier, 2018), p. 137.CrossRefGoogle Scholar
  81. 81.
    O. Fergani, F. Berto, T. Welo, and S.Y. Liang, Fatigue Fract. Eng. Mater. Struct. 40, 971 (2017).CrossRefGoogle Scholar
  82. 82.
    J.F. Villegas, J.V. Dominguez, G.V. Ochoa, and J. Unfried-Silgado, Contemp. Eng. Sci. 10, 1659 (2017).CrossRefGoogle Scholar
  83. 83.
    K. Chen, X. Liu, and J. Ni, Int. J. Adv. Manuf. Technol. 91, 1697 (2017).CrossRefGoogle Scholar
  84. 84.
    M. Aliha and H. Gharehbaghi, Eng. Fract. Mech. 180, 213 (2017).CrossRefGoogle Scholar
  85. 85.
    X. Song, M. Xie, F. Hofmann, T. Illston, T. Connolley, C. Reinhard, R.C. Atwood, L. Connor, M. Drakopoulos, and L. Frampton, Int. J. Mater. Form. 8, 245 (2015).CrossRefGoogle Scholar
  86. 86.
    D. Qiao, Z. Feng, W. Zhang, Y. Wang, and P. Crooker, Proceedings of the ASME 2013 Pressure Vessels & Piping Division Conference (2013), p. 98081.Google Scholar
  87. 87.
    M.A. Somashekara, M. Naveenkumar, A. Kumar, C. Viswanath, and S. Simhambhatla, Int. J. Adv. Manuf. Technol. 90, 2009 (2017).CrossRefGoogle Scholar
  88. 88.
    Z. Wang, A.D. Stoica, D. Ma, and A.M. Beese, Mater. Sci. Eng., A 714, 75 (2018).CrossRefGoogle Scholar
  89. 89.
    S.S. Sih and J.W. Barlow, Particul. Sci. Technol. 22, 427 (2004).CrossRefGoogle Scholar
  90. 90.
    P. Prabhakar, W.J. Sames, R. Dehoff, and S.S. Babu, Addit. Manuf. 7, 83 (2015).CrossRefGoogle Scholar
  91. 91.
    C. Li, Z.Y. Liu, X.Y. Fang, and Y.B. Guo, Procedia CIRP 71, 348 (2018).CrossRefGoogle Scholar
  92. 92.
    E.R. Denlinger, Thermo-Mechanical Modeling of Additive Manufacturing, ed. M. Gouge and P. Michaleris (Amsterdam: Elsevier, 2018), pp. 199–201.CrossRefGoogle Scholar
  93. 93.
    B. Vayre, F. Vignat, and F. Villeneuve, Mech. Ind. 13, 89 (2012).CrossRefGoogle Scholar
  94. 94.
    J. Irwin and M. Gouge, Thermo-Mechanical Modeling of Additive Manufacturing, ed. M. Gouge and P. Michaleris (Amsterdam: Elsevier, 2018), p. 251.CrossRefGoogle Scholar
  95. 95.
    Y. Li and D. Gu, Addit. Manuf. 1, 99 (2014).CrossRefGoogle Scholar
  96. 96.
    Ø. Grong and H.R. Shercliff, Prog. Mater Sci. 47, 163 (2002).CrossRefGoogle Scholar
  97. 97.
    C. Charles, N. Järvstråt, in Proceedings of the 8th International Conference, ed. S.A. David, T. DebRoy, J.N. DuPont, T. Koseki, and H.B. Smartt (ASM International, 2009), p. 477.Google Scholar
  98. 98.
    C. Baykasoglu, O. Akyildiz, D. Candemir, Q. Yang, and A.C. To, J. Manuf. Sci. Eng. 140, 051003 (2018).CrossRefGoogle Scholar
  99. 99.
    J. Irwin, E.W. Reutzel, P. Michaleris, J. Keist, and A.R. Nassar, J. Manuf. Sci. Eng. 138, 111007 (2016).CrossRefGoogle Scholar
  100. 100.
    G. Vastola, G. Zhang, Q.X. Pei, and Y. Zhang, JOM 68, 1370 (2016).CrossRefGoogle Scholar
  101. 101.
    S. Sahoo and K. Chou, Addit. Manuf. 9, 14 (2016).CrossRefGoogle Scholar
  102. 102.
    L. Lu, N. Sridhar, and Y. Zhang, Acta Mater. 144, 801 (2018).CrossRefGoogle Scholar
  103. 103.
    P.W. Liu, Y.Z. Ji, Z. Wang, C.L. Qiu, A.A. Antonysamy, L. Chen, X.Y. Cui, and L. Chen, J. Mater. Process. Technol. 257, 191 (2018).CrossRefGoogle Scholar
  104. 104.
    Y. Ji, L. Chen, and L. Chen, Thermo-Mechanical Modeling of Additive Manufacturing, ed. M. Gouge and P. Michaleris (Amsterdam: Elsevier, 2018), p. 93.CrossRefGoogle Scholar
  105. 105.
    T.M. Rodgers, J.D. Madison, and V. Tikare, Comput. Mater. Sci. 135, 78 (2017).CrossRefGoogle Scholar
  106. 106.
    E.A. Holm and C.C. Battaile, JOM 53, 20 (2001).CrossRefGoogle Scholar
  107. 107.
    M. Rappaz and C. Gandin, Acta Metall. Mater. 41, 345 (1993).CrossRefGoogle Scholar
  108. 108.
    Y. Lian, S. Lin, W. Yan, W.K. Liu, and G.J. Wagner, Comput. Mech. 61, 543 (2018).MathSciNetCrossRefGoogle Scholar
  109. 109.
    A. Zinoviev, O. Zinovieva, V. Ploshikhin, V. Romanova, and R. Balokhonov, Mater. Des. 106, 321 (2016).CrossRefGoogle Scholar
  110. 110.
    O. Zinovieva, A. Zinoviev, and V. Ploshikhin, Comput. Mater. Sci. 141, 207 (2018).CrossRefGoogle Scholar
  111. 111.
    A. Rai, M. Markl, and C. Körner, Comput. Mater. Sci. 124, 37 (2016).CrossRefGoogle Scholar
  112. 112.
    A. Rai, H. Helmer, and C. Körner, Addit. Manuf. 13, 124 (2017).CrossRefGoogle Scholar
  113. 113.
    J. Zhang, F. Liou, W. Seufzer, and K. Taminger, Addit. Manuf. 11, 32 (2016).CrossRefGoogle Scholar
  114. 114.
    A.R.A. Dezfoli, W. Hwang, W. Huang, and T. Tsai, Sci. Rep. 7, 41527 (2017).CrossRefGoogle Scholar
  115. 115.
    C. Panwisawas, C. Qiu, M.J. Anderson, Y. Sovani, R.P. Turner, M.M. Attallah, J.W. Brooks, and H.C. Basoalto, Comput. Mater. Sci. 126, 479 (2017).CrossRefGoogle Scholar
  116. 116.
    O. Lopez-Botello, U. Martinez-Hernandez, J. Ramírez, C. Pinna, and K. Mumtaz, Mater. Des. 113, 369 (2017).CrossRefGoogle Scholar
  117. 117.
    H. Yin and S.D. Felicelli, Acta Mater. 58, 1455 (2010).CrossRefGoogle Scholar
  118. 118.
    J. Yang, H. Yu, H. Yang, F. Li, Z. Wang, and X. Zeng, J. Alloys Compd. 748, 281 (2018).CrossRefGoogle Scholar
  119. 119.
    S. Ghosh, N. Ofori-Opoku, and J.E. Guyer, Comput. Mater. Sci. 144, 256 (2018).CrossRefGoogle Scholar
  120. 120.
    P. Promoppatum, S. Yao, P.C. Pistorius, A.D. Rollett, P.J. Coutts, F. Lia, and R. Martukanitz, Prog. Addit. Manuf. 3, 15 (2018).CrossRefGoogle Scholar
  121. 121.
    Z. Wang, T.A. Palmer, and A.M. Beese, Acta Mater. 110, 226 (2016).CrossRefGoogle Scholar
  122. 122.
    S. Liu, H. Zhu, G. Peng, J. Yin, and X. Zeng, Mater. Des. 142, 319 (2018).CrossRefGoogle Scholar
  123. 123.
    M. Tang, P.C. Pistorius, and J.L. Beuth, Addit. Manuf. 14, 39 (2017).CrossRefGoogle Scholar
  124. 124.
    G. Tapia, A.H. Elwany, and H. Sang, Addit. Manuf. 12, 282 (2016).CrossRefGoogle Scholar
  125. 125.
    M. Khanzadeh, S. Chowdhury, L. Bian, M.A. Tschopp, Proceedings of the ASME 2017 12th International Manufacturing Science and Engineering Conference (2017).Google Scholar
  126. 126.
    H. Lim, F. Abdeljawad, S.J. Owen, B.W. Hanks, J.W. Foulk, and C.C. Battaile, Modell. Simul. Mater. Sci. Eng. 24, 045016 (2016).CrossRefGoogle Scholar
  127. 127.
    A. Kergaßner, J. Mergheim, and P. Steinmann, Comput. Math Appl. (2018).  https://doi.org/10.1016/j.camwa.2018.05.016.CrossRefGoogle Scholar
  128. 128.
    J.A. Newman, W.A. Tayon, T.J. Ruggles, S.R. Yeratapally, C.A. Brice, J.D. Hochhalter, J.M. Baughman, and H.D. Claytor, Characterization of Titanium Alloys Produced by Electron Beam Directed Energy Deposition (2018). https://ntrs.nasa.gov/search.jsp?R=20180008441. Accessed 20 June 2019.
  129. 129.
    B.J. Hayes, B.W. Martin, B. Welk, S.J. Kuhr, T.K. Ales, D.A. Brice, I. Ghamarian, A.H. Baker, C.V. Haden, and D.G. Harlow, Acta Mater. 133, 120 (2017).CrossRefGoogle Scholar
  130. 130.
    O. Zinovieva, A. Zinoviev, V. Ploshikhin, V. Romanova, and R. Balokhonov, Mater. Sci. Technol. 34, 1591 (2018).CrossRefGoogle Scholar
  131. 131.
    S.J. Wolff, S. Lin, E.J. Faierson, W.K. Liu, G.J. Wagner, and J. Cao, Acta Mater. 132, 106 (2017).CrossRefGoogle Scholar
  132. 132.
    E. Wycisk, A. Solbach, S. Siddique, D. Herzog, F. Walther, and C. Emmelmann, Phys. Procedia 56, 371 (2014).CrossRefGoogle Scholar
  133. 133.
    S. Leuders, M. Vollmer, F. Brenne, T. Tröster, and T. Niendorf, Metall. Mater. Trans. A 46, 3816 (2015).CrossRefGoogle Scholar
  134. 134.
    A. Yadollahi, M.J. Mahtabi, A. Khalili, H.R. Doude, and J.C. Newman Jr, Fatigue Fract. Eng. Mater. 41, 1602 (2018).CrossRefGoogle Scholar
  135. 135.
    B. Torries and N. Shamsaei, JOM 69, 2698 (2017).CrossRefGoogle Scholar
  136. 136.
    D.L. McDowell, K. Gall, M.F. Horstemeyer, and J. Fan, Eng. Fract. Mech. 70, 49 (2003).CrossRefGoogle Scholar
  137. 137.
    Y. Xue, A. Pascu, M.F. Horstemeyer, L. Wang, and P.T. Wang, Acta Mater. 58, 4029 (2010).CrossRefGoogle Scholar
  138. 138.
    W. Yan, S. Lin, O.L. Kafka, C. Yu, Z. Liu, Y. Lian, S. Wolff, J. Cao, G.J. Wagner, and W.K. Liu, Front. Mech. Eng. 13, 482 (2018).CrossRefGoogle Scholar
  139. 139.
    S.L. Ford, J. Int. Com. Econ. 6, 40 (2014).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Theofilos Gatsos
    • 1
  • Karim A. Elsayed
    • 1
    Email author
  • Yuwei Zhai
    • 1
  • Diana A. Lados
    • 1
  1. 1.Integrative Materials Design CenterWorcester Polytechnic InstituteWorcesterUSA

Personalised recommendations