Advertisement

JOM

pp 1–10 | Cite as

ICME Approach to Determining Critical Pore Size of IN718 Produced by Selective Laser Melting

  • Michael D. SangidEmail author
  • Priya Ravi
  • Veerappan Prithivirajan
  • Nolan A. Miller
  • Peter Kenesei
  • Jun-Sang Park
ICME-Based Design and Optimization of Materials for Additive Manufacturing
  • 96 Downloads

Abstract

A degree of porosity is expected in additively manufactured (AM) materials. To aid in the qualification of AM materials, the smallest pore size that results in a debit in the fatigue performance is quantified. In the work presented herein, crystal plasticity simulations are used to identify the stress concentration around pores of various sizes, revealing that a single 20-μm pore or two 10-μm pores (with centers spaced 15 μm apart) localize stress at the pore, as opposed to elsewhere in the microstructure. In situ microtomography and far-field high-energy x-ray diffraction microscopy were used to identify crack formation and the evolution of the grain-level micromechanical fields during cyclic loading. Eighteen cracks were observed (15 at pores, 3 at the surface) at highly stressed grains in a sample, although most did not propagate. The dominant crack was seen to originate from the free surface, which is rationalized by fracture mechanics.

Notes

Acknowledgements

Support for this work was provided by DARPA under Contract N66001-14-1-4041 with program managers M. Maher and J. Vanderbrande. The IN718 specimens were manufactured by R. Martukanitz and K. Meinert at Penn State University’s Center for Innovative Materials Processing through Direct Digital Deposition (CIMP-3D). The authors would like to thank Dr. D. Naragani for assistance with data collection during the in situ experiments and helpful discussions regarding data reconstruction, A. Mallory for fractography analysis, Dr. T. Book for preliminary material characterization, J. Rotella for assistance during the in situ experiments, and Dr. H. Sharma of the Argonne National Laboratory for help with ff-HEDM data reconstruction. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

References

  1. 1.
    W.E. Frazier, J. Mater. Eng. 23, 1917 (2014).Google Scholar
  2. 2.
    M. Gorelik, Int. J. Fatigue 94, 168 (2017).CrossRefGoogle Scholar
  3. 3.
    J.-P. Choi, G.-H. Shin, S. Yang, D.-Y. Yang, J.-S. Lee, M. Brochu, and J.-H. Yu, Powder Technol. 310, 60 (2017).CrossRefGoogle Scholar
  4. 4.
    G. Kasperovich, J. Haubrich, J. Gussone, and G. Requena, Mater. Des. 105, 160 (2016).CrossRefGoogle Scholar
  5. 5.
    P. Edwards and M. Ramulu, Mater. Sci. Eng. A 598, 327 (2014).CrossRefGoogle Scholar
  6. 6.
    S. Tammas-Williams, P.J. Withers, I. Todd, and P.B. Prangnell, Sci. Rep. 7, 7308 (2017).CrossRefGoogle Scholar
  7. 7.
    T. Mishurova, K. Artzt, J. Haubrich, G. Requena, and G. Bruno, Add. Manuf. 25, 325 (2019).Google Scholar
  8. 8.
    S. Tammas-Williams, H. Zhao, F. Léonard, F. Derguti, I. Todd, and P.B. Prangnell, Mater. Charact. 102, 47 (2015).CrossRefGoogle Scholar
  9. 9.
    J. Stef, A. Poulon-Quintin, A. Redjaimia, J. Ghanbaja, O. Ferry, M. De Sousa, and M. Gouné, Mater. Des. 156, 480 (2018).CrossRefGoogle Scholar
  10. 10.
    G. Kasperovich and J. Hausmann, J. Mater. Process. Technol. 220, 202 (2015).CrossRefGoogle Scholar
  11. 11.
    H. Gong, K. Rafi, N. V. Karthik, T. L. Starr and B. Stucker, in Defect Morphology in Ti-6Al-4 V Parts Fabricated by Selective Laser Melting and Electron Beam Melting, Solid Freeform Fabrication Symposium (2012).Google Scholar
  12. 12.
    R. Cunningham, A. Nicolas, J. Madsen, E. Fodran, E. Anagnostou, M.D. Sangid, and A.D. Rollett, J. Mater. Res. 5, 516 (2017).Google Scholar
  13. 13.
    M.D. Sangid, T.A. Book, D. Naragani, J. Rotella, P. Ravi, A. Finch, P. Kenesei, J.-S. Park, H. Sharma, J. Almer, and X. Xiao, Add. Manuf. 22, 479 (2018).Google Scholar
  14. 14.
    S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H.A. Richard, and H.J. Maier, Int. J. Fatigue 48, 300 (2013).CrossRefGoogle Scholar
  15. 15.
    L. Sheridan, O.E. Scott-Emuakpor, T. George, and J.E. Gockel, Mater. Sci. Eng. A 727, 170 (2018).CrossRefGoogle Scholar
  16. 16.
    X. Shui, K. Yamanaka, M. Mori, Y. Nagata, K. Kurita, and A. Chiba, Mater. Sci. Eng. A 680, 239 (2017).CrossRefGoogle Scholar
  17. 17.
    M. Zhang, C.-N. Sun, X. Zhang, J. Wei, D. Hardacre, and H. Li, Mater. Des. 145, 42 (2018).CrossRefGoogle Scholar
  18. 18.
    R. Biswal, A.K. Syed, and X. Zhang, Add. Manuf. 23, 433 (2018).Google Scholar
  19. 19.
    X. Zhou, D. Wang, X. Liu, D. Zhang, S. Qu, J. Ma, G. London, Z. Shen, and W. Liu, Acta Mater. 98, 1 (2015).CrossRefGoogle Scholar
  20. 20.
    H. Gong, K. Rafi, T. L. Starr and B. Stucker, in Effect of Defects on Fatigue Tests of As-Built Ti-6Al-4 V Parts Fabricated by Selective Laser Melting, Solid Freeform Fabrication Symposium (2012).Google Scholar
  21. 21.
    Q.G. Wang, D. Apelian, and D.A. Lados, J Light Metals 1, 73 (2001).CrossRefGoogle Scholar
  22. 22.
    H.T. Pang and P.A.S. Reed, Int. J. Fatigue 25, 1089 (2003).CrossRefGoogle Scholar
  23. 23.
    Y. Murakami and M. Endo, Int. J. Fatigue 16, 163 (1994).CrossRefGoogle Scholar
  24. 24.
    C. Garb, M. Leitner, and F. Grün, Eng. Fract. Mech. 185, 61 (2017).CrossRefGoogle Scholar
  25. 25.
    B.M. Schönbauer and H. Mayer, Int. J. Fatigue 127, 362 (2019).CrossRefGoogle Scholar
  26. 26.
    H. Kitagawa, in Proc. of 2nd ICM, Cleveland, pp. 627–631 (1976).Google Scholar
  27. 27.
    M. Seifi, A. Salem, J. Beuth, O. Harrysson, and J.J. Lewandowski, JOM 68, 747 (2016).CrossRefGoogle Scholar
  28. 28.
    M. Seifi, M. Gorelik, J. Waller, N. Hrabe, N. Shamsaei, S. Daniewicz, and J.J. Lewandowski, JOM 69, 439 (2017).CrossRefGoogle Scholar
  29. 29.
    T.M. Pollock and J. Allison, Integrated computational materials engineering: a transformational discipline for improved competitiveness and national security (Washington, DC: The National Academies Press, 2008).Google Scholar
  30. 30.
    National Science and Technology Council, in Materials Genome Initiative for Global Competitiveness (2011).Google Scholar
  31. 31.
    National Academies of Sciences, Engineering and Medicine, in Predictive Theoretical and Computational Approaches for Additive Manufacturing: Proceedings of a Workshop (National Academies Press, 2016).Google Scholar
  32. 32.
    F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe, Acta Mater. 58, 1152 (2010).CrossRefGoogle Scholar
  33. 33.
    C.C. Battaile, J.M. Emery, L.N. Brewer, and B.L. Boyce, Philos. Mag. 95, 1069 (2015).CrossRefGoogle Scholar
  34. 34.
    V. Prithivirajan and M.D. Sangid, J. Mater. Des. 150, 139 (2018).CrossRefGoogle Scholar
  35. 35.
    J.C. Schuren, P.A. Shade, J.V. Bernier, S.F. Li, B. Blank, J. Lind, P. Kenesei, U. Lienert, R.M. Suter, and T.J. Turner, Curr. Opin. Solid State Mater. Sci. 19, 235 (2015).CrossRefGoogle Scholar
  36. 36.
    S. Tammas-Williams, P.J. Withers, I. Todd, and P.B. Prangnell, Metall. Mater. Trans. A 47, 1939 (2016).CrossRefGoogle Scholar
  37. 37.
    T.J. Marrow, J.Y. Buffiere, P.J. Withers, G. Johnson, and D. Engelberg, Int. J. Fatigue 26, 717 (2004).CrossRefGoogle Scholar
  38. 38.
    E. Maire and P.J. Withers, Int. Mater. Rev. 59, 1 (2014).CrossRefGoogle Scholar
  39. 39.
    P.J. Withers and M. Preuss, Annu. Rev. Mater. Res. 42, 81 (2012).CrossRefGoogle Scholar
  40. 40.
    L. Margulies, T. Lorentzen, H.F. Poulsen, and T. Leffers, Acta Mater. 50, 1771 (2002).CrossRefGoogle Scholar
  41. 41.
    J. Oddershede, S. Schmidt, H.F. Poulsen, H.O. Sorensen, J. Wright, and W. Reimers, J. Appl. Crystall. 43, 539 (2010).CrossRefGoogle Scholar
  42. 42.
    J.V. Bernier, N.R. Barton, U. Lienert, and M.P. Miller, J. Strain Anal. Eng. Des. 46, 527 (2011).CrossRefGoogle Scholar
  43. 43.
    Y.S.J. Yoo, T.A. Book, M.D. Sangid, and J. Kacher, Mater. Sci. Eng. A 724, 444 (2018).CrossRefGoogle Scholar
  44. 44.
    J.J. Williams, K.E. Yazzie, E. Padilla, N. Chawla, X. Xiao, and F. De Carlo, Int. J. Fatigue 57, 79 (2013).CrossRefGoogle Scholar
  45. 45.
    S.T. Carter, J. Rotella, R.F. Agyei, X. Xiao, and M.D. Sangid, Int. J. Fatigue 116, 490 (2018).CrossRefGoogle Scholar
  46. 46.
    C.A. Schneider, W.S. Rasband, and K.W. Eliceiri, Nat. Methods 9, 671 (2012).CrossRefGoogle Scholar
  47. 47.
    P.A. Shade, D.B. Menasche, J.V. Bernier, P. Kenesei, J.-S. Park, R.M. Suter, J.C. Schuren, and T.J. Turner, J. Appl. Crystall. 49, 700 (2016).CrossRefGoogle Scholar
  48. 48.
    P.A. Shade, B. Blank, J.C. Schuren, T.J. Turner, P. Kenesei, K. Goetze, R.M. Suter, J.V. Bernier, S.F. Li, and J. Lind, Rev. Sci. Instrum. 86, 093902 (2015).CrossRefGoogle Scholar
  49. 49.
    H. Sharma, R.M. Huizenga, and S.E. Offerman, J. Appl. Crystall. 45, 693 (2012).CrossRefGoogle Scholar
  50. 50.
    H. Sharma, R.M. Huizenga, and S.E. Offerman, J. Appl. Crystall. 45, 705 (2012).CrossRefGoogle Scholar
  51. 51.
    H.F. Poulsen, Three-dimensional X-ray diffraction microscopy: mapping polycrystals and their dynamics (Berlin: Springer, 2004).CrossRefGoogle Scholar
  52. 52.
    A. Khounsary, P. Kenesei, J. Collins, G. Navrotski, J. Nudell, in J. Phys. Conf. Ser., p. 212015. (IOP Publishing, 2013).Google Scholar
  53. 53.
    Z. Konrad, User’s Guide – Avizo (2017).Google Scholar
  54. 54.
    M.A. Groeber and M.A. Jackson, Integr. Mater. Manuf. Innov. 3, 5 (2014).CrossRefGoogle Scholar
  55. 55.
    E.H. Lee and D.T. Liu, J. Appl. Phys. 38, 19 (1967).CrossRefGoogle Scholar
  56. 56.
    J.W. Hutchinson, Proc. R. Soc. Lond. A 348, 101 (1976).CrossRefGoogle Scholar
  57. 57.
    P. J. Armstrong, C. Frederick (1966). A mathematical representation of the multiaxial Bauschinger effect. Central Electricity Generating Board and Berkeley Nuclear Laboratories.Google Scholar
  58. 58.
    R. Bandyopadhyay, V. Prithivirajan, and M.D. Sangid, JOM 71, 2612 (2019).CrossRefGoogle Scholar
  59. 59.
    S.C. Wu, T.Q. Xiao, and P.J. Withers, J. Eng. Fract. Mech. 182, 127 (2017).CrossRefGoogle Scholar
  60. 60.
    P.J. Withers, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 373, 20130157 (2015).CrossRefGoogle Scholar
  61. 61.
    B. Yu, R.S. Bradley, C. Soutis, and P.J. Withers, J. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 374, 20160037 (2016).CrossRefGoogle Scholar
  62. 62.
    A. Rovinelli, M.D. Sangid, H. Proudhon, and W. Ludwig, NPJ Comput. Mater. 4, 35 (2018).CrossRefGoogle Scholar
  63. 63.
    T.L. Anderson, Fracture Mechanics: Fundamentals and Applications (Boca Raton: CRC Press, 2005).zbMATHCrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Aeronautics and AstronauticsPurdue UniversityWest LafayetteUSA
  2. 2.School of Materials EngineeringPurdue UniversityWest LafayetteUSA
  3. 3.X-ray Science DivisionArgonne National LaboratoryLemontUSA

Personalised recommendations