pp 1–13 | Cite as

Listening to Radiation Damage In Situ: Passive and Active Acoustic Techniques

  • Cody A. DennettEmail author
  • R. Charles Choens
  • Caitlin A. Taylor
  • Nathan M. Heckman
  • Mathew D. Ingraham
  • David Robinson
  • Brad L. Boyce
  • Michael P. Short
  • Khalid Hattar
Advanced Characterization and Testing of Irradiated Materials


Knowing when, why, and how materials evolve, degrade, or fail in radiation environments is pivotal to a wide range of fields from semiconductor processing to advanced nuclear reactor design. A variety of methods, including optical and electron microscopy, mechanical testing, and thermal techniques, have been used in the past to successfully monitor the microstructural and property evolution of materials exposed to extreme radiation environments. Acoustic techniques have also been used in the past for this purpose, although most methodologies have not achieved widespread adoption. However, with an increasing desire to understand microstructure and property evolution in situ, acoustic methods provide a promising pathway to uncover information not accessible to more traditional characterization techniques. This work highlights how two different classes of acoustic techniques may be used to monitor material evolution during in situ ion beam irradiation. The passive listening technique of acoustic emission is demonstrated on two model systems, quartz and palladium, and shown to be a useful tool in identifying the onset of damage events such as microcracking. An active acoustic technique in the form of transient grating spectroscopy is used to indirectly monitor the formation of small defect clusters in copper irradiated with self-ions at high temperature through the evolution of surface acoustic wave speeds. These studies together demonstrate the large potential for using acoustic techniques as in situ diagnostics. Such tools could be used to optimize ion beam processing techniques or identify modes and kinetics of materials degradation in extreme radiation environments.



The authors would like to thank Dan Buller, George Burns, and Stuart Van Deusen for their assistance and Trevor Clark for useful discussions. The time of N.M.H., B.L.B., and K.H. was fully supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. This work was supported in part by the MIT-SUTD International Design Center (IDC). This work was partially supported by the U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07-051D14517 as part of a Nuclear Science User Facilities experiment. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. DOE’s National Nuclear Security Administration under Contract DE-NA-0003525. The views expressed in the article do not necessarily represent the views of the U.S. DOE or the United States Government.

Supplementary material

11837_2019_3898_MOESM1_ESM.wav (1 kb)
Supplementary material 1 (wav 1 KB)
11837_2019_3898_MOESM2_ESM.wav (1 kb)
Supplementary material 2 (wav 0 KB)
11837_2019_3898_MOESM3_ESM.wav (8 kb)
Supplementary material 3 (wav 7 KB)
11837_2019_3898_MOESM4_ESM.wav (1 kb)
Supplementary material 4 (wav 0 KB)


  1. 1.
    T. Allen, J. Busby, M. Meyer, and D. Petti, Mater. Today 13, 14 (2010)CrossRefGoogle Scholar
  2. 2.
    S.J. Zinkle and G.S. Was, Acta Mater. 61, 735 (2013)CrossRefGoogle Scholar
  3. 3.
    A. Jacobs, G. Cieslewski, A.D. George, A. Gordon-Ross, and H. Lam, ACM Trans. Reconfig. Technol. Syst. 5, 21:1 (2012)CrossRefGoogle Scholar
  4. 4.
    J. Gonzalo, D. Domínguez, and D. López, Prog. Aerosp. Sci. 70, 28 (2014)CrossRefGoogle Scholar
  5. 5.
    E. Keegan, M.J. Kristo, K. Toole, R. Kips, and E. Young, Anal. Chem. 88, 1496 (2016)CrossRefGoogle Scholar
  6. 6.
    I. Yamada, J. Matsuo, N. Toyoda, T. Aoki, and T. Seki, Curr. Opin. Solid State Mater. Sci. 19, 12 (2015)CrossRefGoogle Scholar
  7. 7.
    B.N. Singh, A.J.E. Foreman, and H. Trinkaus, J. Nucl. Mater. 249, 103 (1997)CrossRefGoogle Scholar
  8. 8.
    K. Farrell, T.S. Byun, and N. Hashimoto, J. Nucl. Mater. 335, 471 (2004)CrossRefGoogle Scholar
  9. 9.
    X. Xiao, Q. Chen, H. Yang, H. Duan, and J. Qu, J. Nucl. Mater. 485, 80 (2017)CrossRefGoogle Scholar
  10. 10.
    K. Shiba and A. Hishinuma, J. Nucl. Mater. 283–287, 474 (2000)CrossRefGoogle Scholar
  11. 11.
    G.A. Cottrell, R. Kemp, H.K.D.H. Bhadeshia, G.R. Odette, and T. Yamamoto, J. Nucl. Mater. 367–370, 603 (2007)CrossRefGoogle Scholar
  12. 12.
    M.L. Jenkins and M.A. Kirk, Characterisation of Radiation Damage by Transmission Electron Microscopy (CRC Press, Boca Raton, 2000)CrossRefGoogle Scholar
  13. 13.
    C.M. Barr, N. Li, B.L. Boyce, and K. Hattar, Appl. Phys. Lett. 112, 181903 (2018)CrossRefGoogle Scholar
  14. 14.
    Z. Jiao and G.S. Was, Acta Mater. 59, 1220 (2011)CrossRefGoogle Scholar
  15. 15.
    C.M. Barr, G.A. Vetterick, K.A. Unocic, K. Hattar, X.-M. Bai, and M.L. Taheri, Acta Mater. 67, 145 (2014)CrossRefGoogle Scholar
  16. 16.
    C. Lu, T. Yang, K. Jin, N. Gao, P. Xiu, Y. Zhang, F. Gao, H. Bei, W.J. Weber, K. Sun, Y. Dong, and L. Wang, Acta Mater. 127, 98 (2017)CrossRefGoogle Scholar
  17. 17.
    G.S. Was, Z. Jiao, E. Getto, K. Sun, A.M. Monterrosa, S.A. Maloy, O. Anderoglu, B.H. Sencer, and M. Hackett, Scri. Mater. 88, 33 (2014)CrossRefGoogle Scholar
  18. 18.
    S.J. Zinkle and L.L. Snead, Scri. Mater. 143, 154 (2018)CrossRefGoogle Scholar
  19. 19.
    E. Getto, K. Sun, A.M. Monterrosa, Z. Jiao, M.J. Hackett, and G.S. Was, J. Nucl. Mater. 480, 159 (2016)CrossRefGoogle Scholar
  20. 20.
    E. Getto, K. Sun, S. Taller, A.M. Monterrosa, Z. Jiao, and G.S. Was, J. Nucl. Mater. 477, 273 (2016)CrossRefGoogle Scholar
  21. 21.
    P. Hosemann, C. Shin, and D. Kiener, J. Mater. Res. 30, 1231 (2015)CrossRefGoogle Scholar
  22. 22.
    A. Reichardt, A. Lupinacci, D. Frazer, N. Bailey, H. Vo, C. Howard, Z. Jiao, A.M. Minor, P. Chou, and P. Hosemann, J. Nucl. Mater. 486, 323 (2017)CrossRefGoogle Scholar
  23. 23.
    P. Hosemann, Scri. Mater. 143, 161 (2018)CrossRefGoogle Scholar
  24. 24.
    S.J. Dillon, D.C. Bufford, G.S. Jawaharram, X. Liu, C. Lear, K. Hattar, and R.S. Averback, J. Nucl. Mater. 490, 59 (2017)CrossRefGoogle Scholar
  25. 25.
    B. Wang, M.A. Haque, V. Tomar, and K. Hattar, MRS Commun. 7, 595 (2017)CrossRefGoogle Scholar
  26. 26.
    K.H. Matlack, J.J. Wall, J.-Y. Kim, J. Qu, L.J. Jacobs, and H.-W. Viehrig, J. Appl. Phys. 111, 054911 (2012)CrossRefGoogle Scholar
  27. 27.
    K.H. Matlack, J.-Y. Kim, J.J. Wall, J. Qu, L.J. Jacobs, and M.A. Sokolov, J. Nucl. Mater. 448, 26 (2014)CrossRefGoogle Scholar
  28. 28.
    J. Etoh, M. Sagisaka, T. Matsunaga, Y. Isobe, F.A. Garner, P.D. Freyer, Y. Huang, J.M.K. Wiezorek, and T. Okita, J. Nucl. Mater. 440, 500 (2013)CrossRefGoogle Scholar
  29. 29.
    R.A. Duncan, F. Hofmann, A. Vega-Flick, J.K. Eliason, A.A. Maznev, A.G. Every, and K.A. Nelson, Appl. Phys. Lett. 109, 151906 (2016)CrossRefGoogle Scholar
  30. 30.
    F. Hofmann, D. Nguyen-Manh, M.R. Gilbert, C.E. Beck, J.K. Eliason, A.A. Maznev, W. Liu, D.E.J. Armstrong, K.A. Nelson, and S.L. Dudarev, Acta Mater. 89, 352 (2015)CrossRefGoogle Scholar
  31. 31.
    C.A. Dennett, K.P. So, A. Kushima, D.L. Buller, K. Hattar, and M.P. Short, Acta Mater. 145, 496 (2018)CrossRefGoogle Scholar
  32. 32.
    G. Vizkelethy, B.L. Doyle, D.K. Brice, P.E. Dodd, M.R. Shaneyfelt, and J.R. Schwank, Nucl. Instrum. Methods Phys. Res. B 231, 467 (2005)CrossRefGoogle Scholar
  33. 33.
    J.A. Hinks, Nucl. Instrum. Methods Phys. Res. B 267, 3652 (2009)CrossRefGoogle Scholar
  34. 34.
    S.  Miro, G.  Velisa, L.  Thomé, Y.  Trocellier, P.and Serruys, A.  Debelle, and F.  Garrido, J. Raman Spectrosc. 45, 481 (2014)CrossRefGoogle Scholar
  35. 35.
    K. Hattar, D.C. Bufford, and D.L. Buller, Nucl. Instrum. Methods Phys. Res. B 338, 56 (2014)CrossRefGoogle Scholar
  36. 36.
    G. Greaves, A.H. Mir, R.W. Harrison, M.A. Tunes, S.E. Donnelly, and J.A. Hinks, Nucl. Instrum. Methods Phys. Res. A 931, 37 (2019)CrossRefGoogle Scholar
  37. 37.
    J.A. Hudson, R.S. Nelson, and R.J. McElroy, J. Nucl. Mater. 65, 279 (1977)CrossRefGoogle Scholar
  38. 38.
    K. Tai, R.S. Averback, P. Bellon, Y. Ashkenazy, and B. Stumphy, J. Nucl. Mater. 422, 8 (2012)CrossRefGoogle Scholar
  39. 39.
    S. Özerinç, R.S. Averback, and W.P. King, JOM 68, 2737 (2016)CrossRefGoogle Scholar
  40. 40.
    G.S. Jawaharram, P.M. Price, C.M. Barr, K. Hattar, R.S. Averback, and S.J. Dillon, Scri. Mater. 148, 1 (2018)CrossRefGoogle Scholar
  41. 41.
    D. Lockner, Int. J. Rock Mech. Min. Sci. 30, 883 (1993)CrossRefGoogle Scholar
  42. 42.
    E. Andò, S.A. Hall, G. Viggiani, J. Desrues, and P. Bésuelle, Acta Geotech. 7, 1 (2012)CrossRefGoogle Scholar
  43. 43.
    M.D. Ingraham, K.A. Issen, and D.J. Holcomb, Acta Geotech. 8, 645 (2013)CrossRefGoogle Scholar
  44. 44.
    D. Adliene, L. Pranevicius, and A. Ragauskas, Nucl. Instrum. Methods Phys. Res. 209–210, 357 (1983)CrossRefGoogle Scholar
  45. 45.
    T. Kambara, Y. Kanai, T.M. Kojima, Y. Nakai, A. Yoneda, K. Kageyama, and Y. Yamazaki, Nucl. Instrum. Methods Phys. Res. B 164–165, 415 (2000)CrossRefGoogle Scholar
  46. 46.
    T. Kambara, Nucl. Instrum. Methods Phys. Res. B 230, 601 (2005)CrossRefGoogle Scholar
  47. 47.
    A.A. Maznev, K.A. Nelson, and J.A. Rogers, Opt. Lett. 23, 1319 (1998)CrossRefGoogle Scholar
  48. 48.
    F. Hofmann, M.P. Short, and C.A. Dennett, MRS Bull. 44, 392 (2019)CrossRefGoogle Scholar
  49. 49.
    C.A. Dennett, D.L. Buller, K. Hattar, and M.P. Short, Nucl. Instrum. Methods Phys. Res. B 440, 126 (2019)CrossRefGoogle Scholar
  50. 50.
    H.N.G. Wadley, C.B. Scruby, and J.H. Speake, Int. Met. Rev. 25, 41 (1980)CrossRefGoogle Scholar
  51. 51.
    H.L. Dunegan, C.A. Tatro, and D.O. Harris, Acoustic emission research, Tech. Rep. UCID-4868 (Lawrence Radiation Laboratory, University of California, Livermore, 1964)Google Scholar
  52. 52.
    H.L. Dunegan, D.O. Harris, and A.S. Tetelman, Detection on fatigue crack growth by acoustic emission techniques, in Proceedings of the Seventh Symposium on Nondestructive Evaluation of Components and Materials in Aerospace, Weapons Systems, and Nuclear Applications (1969)Google Scholar
  53. 53.
    M. Huang, L. Jiang, P.K. Liaw, C.R. Brooks, R. Seeley, and D.L. Klarstrom, JOM 50, 1 (1998)Google Scholar
  54. 54.
    C.U. Grosse and M. Ohtsu, Acoustic Emission Testing (Springer, Berlin, 2008)CrossRefGoogle Scholar
  55. 55.
    K.R. Shah and J.F. Labuz, J. Geophys. Res. Solid Earth 100, 15527 (1995)CrossRefGoogle Scholar
  56. 56.
    W.A. Olsson and D.J. Holcomb, Geophys. Res. Lett. 27, 3537 (2000)CrossRefGoogle Scholar
  57. 57.
    P. Baud, E. Klein, and T.F. Wong, J. Struct. Geol. 26, 603 (2004)Google Scholar
  58. 58.
    J. Fortin, S. Stanchits, G. Dresen, and Y. Guéguen, J. Geophys. Res. Solid Earth 111, B10203 (2006)Google Scholar
  59. 59.
    Z. Li and S.P. Shah, Mater. J. 91, 372 (1994)Google Scholar
  60. 60.
    C. Grosse, H. Reinhardt, and T. Dahm, NDT E Int. 30, 223 (1997)CrossRefGoogle Scholar
  61. 61.
    D.-J. Yoon, W.J. Weiss, and S.P. Shah, J. Eng. Mech. 126, 273 (2000)CrossRefGoogle Scholar
  62. 62.
    K. Ohno and M. Ohtsu, Constr. Build. Mater. 24, 2339 (2010)CrossRefGoogle Scholar
  63. 63.
    F. Schubert, Basic principles of acoustic emission tomography, in 26th European Conference on Acoustic Emission Testing (EWGAE) (2004)Google Scholar
  64. 64.
    J.A. Johnson, A.A. Maznev, M.T. Bulsara, E.A. Fitzgerald, T.C. Harman, S. Calawa, C.J. Vineis, G. Turner, and K.A. Nelson, J. Appl. Phys. 111, 023503 (2012)CrossRefGoogle Scholar
  65. 65.
    O.W. Käding, H. Skurk, A.A. Maznev, and E. Matthias, Appl. Phys. A 61, 253 (1995)CrossRefGoogle Scholar
  66. 66.
    C.A. Dennett and M.P. Short, J. Appl. Phys. 123, 215109 (2018)CrossRefGoogle Scholar
  67. 67.
    C.A. Dennett, P. Cao, S.E. Ferry, A. Vega-Flick, A.A. Maznev, K.A. Nelson, A.G. Every, and M.P. Short, Phys. Rev. B 94, 214106 (2016)CrossRefGoogle Scholar
  68. 68.
    J.F. Ziegler, M.D. Ziegler, and J.P. Biersack, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010)Google Scholar
  69. 69.
    C.M. Jimenez, L.F. Lowe, E.A. Burke, and C.H. Sherman, Phys. Rev. 153, 735 (1967)CrossRefGoogle Scholar
  70. 70.
    B. Wang, Y. Yu, I. Pignatelli, G. Sant, and M. Bauchy, J. Chem. Phys. 143, 024505 (2015)CrossRefGoogle Scholar
  71. 71.
    K. Azumi, S. Ishiguro, T. Mizuno, and M. Seo, J. Electroanal. Chem. 347, 111 (1993)CrossRefGoogle Scholar
  72. 72.
    J. Čížekí, O. Melikhova, P. Dobroň, and P. Hruška, Int. J. Hydrog. Energy 42, 22460 (2017)Google Scholar
  73. 73.
    M. Hiraga, G. Izawa, and K. Yoshihara, Nucl. Instrum. Methods Phys. Res. B 51, 163 (1990)CrossRefGoogle Scholar
  74. 74.
    T. Schober, J. Golczewski, R. Lässer, C. Dieker, and H. Trinkaus, Z. Phys. Chem. 147, 161 (1986)CrossRefGoogle Scholar
  75. 75.
    J.M. Jungk, B.L. Boyce, T.E. Buchheit, T.A. Friedmann, D. Yang, and W.W. Gerberich, Acta Mater. 54, 4043 (2006)CrossRefGoogle Scholar
  76. 76.
    J. Friedel, Philos. Mag. 44, 444 (1953)Google Scholar
  77. 77.
    D.M. Parkin, J.A. Goldstone, H.M. Simpson, and J.M. Hemsky, J. Phys. F Met. Phys. 17, 577 (1987)CrossRefGoogle Scholar
  78. 78.
    N. Li, K. Hattar, and A. Misra, J. Nucl. Mater. 439, 185 (2013)Google Scholar
  79. 79.
    B.D. Wirth, V.V. Bulatov, and T. de la Rubia, J. Eng. Mater. Technol. 124, 329 (2002)CrossRefGoogle Scholar
  80. 80.
    D.O. Thompson and D.K. Holmes, J. Appl. Phys. 27, 713 (1956)CrossRefGoogle Scholar
  81. 81.
    D.P.H. Hassleman and R.M. Fulrath, J. Am. Ceram. Soc. 47, 52 (1964)CrossRefGoogle Scholar
  82. 82.
    I.H. Wilson, J. Appl. Phys. 53, 1698 (1982)CrossRefGoogle Scholar
  83. 83.
    G. Carter and V. Vishnyakov, Phys. Rev. B 54, 17647 (1996)CrossRefGoogle Scholar
  84. 84.
    U.  Valbusa, C. Boragno, and F. Bautier de Mongeot, J. Phys. Condens. Matter. 14, 8153 (2002)Google Scholar
  85. 85.
    O. R. de la Fuente, M.A. González, and J.M. Rojo, Phys. Rev. B 63, 085420 (2001)CrossRefGoogle Scholar
  86. 86.
    L.D. Glowinski, J.M. Lanore, C. Fiche, and Y. Adda, J. Nucl. Mater. 61, 41 (1976)CrossRefGoogle Scholar
  87. 87.
    M. Bruel, Electron. Lett. 31, 1201 (1995)CrossRefGoogle Scholar
  88. 88.
    L. Di Cioccio, Y. Le Tiec, F. Letertre, C. Jaussaud, and M. Bruel, Electron. Lett. 32, 1144 (1996)CrossRefGoogle Scholar
  89. 89.
    R.H. Olsson, K. Hattar, S.J. Homeijer, M. Wiwi, M. Eichenfield, D.W. Branch, M.S. Baker, J. Nguyen, B. Clark, T. Bauer, and T.A. Friedmann, Sens. Actuator A Phys. 209, 183 (2014)CrossRefGoogle Scholar
  90. 90.
    S.A. Aldajani, B.R. Dacus, C.A. Dennett, M.G. Burke, K.  Mukahiwa, K.  Anglin, J.J. Wall, T.S. Byune, M.P. Short, Non-destructively detecting LWR structural material embrittlement using transientgrating spectroscopy, in 19th International Conference on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors (2019)Google Scholar
  91. 91.
    B.  Gurovich, Y.N. Korolev, E.A. Kuleshova, Y.A. Nikolaev, Y.I. Shtrombakh, Irradiation embrittlement of reactor pressure vessel steels due to mechanisms other than radiation hardening, in Effects of Radiation on Materials: 18th International Symposium (1999)Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Nuclear Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Sandia National LaboratoriesAlbuquerqueUSA
  3. 3.Sandia National LaboratoriesLivermoreUSA

Personalised recommendations