Advertisement

JOM

pp 1–10 | Cite as

Towards Bridging the Experimental Length-Scale Gap for Tensile Tests on Structural Materials: Lessons Learned from an Initial Assessment of Microtensile Tests and the Path Forward

  • Tanvi Ajantiwalay
  • Hi Vo
  • Ryan Finkelstein
  • Peter Hosemann
  • Assel AitkaliyevaEmail author
Advanced Characterization and Testing of Irradiated Materials
  • 50 Downloads

Abstract

Microtensile testing of structural materials offers several advantages over conventional mesoscale tests, including the ability to target specific areas of interest and directly correlate the mechanical response to the microstructure of the material. As this technique becomes more widely adopted, it has the potential to have a tremendous impact in the nuclear materials field. However, further work on establishing appropriate testing parameters, unifying testing procedures, and demonstrating the effectiveness of the methodology is required before microtensile tests can be used to replace mesotensile tests for the qualification of materials for use in reactor environments. As a first step towards bridging the experimental length-scale gap for tensile tests, we conducted micro- and mesotensile tests on polycrystalline 304 stainless steel and directly compared the test data to identify the size scaling behavior in such material. Comparison of the results obtained on these two length scales clearly illustrates the specimen size effect, with smaller being stronger. The paper discusses the limitations of microtensile testing, outlines the challenges involved in interpretation of its results, and lists the lessons learned through the process.

Notes

Acknowledgements

This work is supported through the Nuclear Energy University Program (NEUP), under project number 18-14912 “Bridging length scales on mechanical property evaluation.” The authors acknowledge David Christianson, Dr. Riley Parrish, and Charlyne Smith for their support during various stages of the project.

Supplementary material

11837_2019_3897_MOESM1_ESM.mov (64.4 mb)
Supplementary material 1 (MOV 65988 kb)
11837_2019_3897_MOESM2_ESM.pdf (202 kb)
Supplementary material 2 (PDF 201 kb)

References

  1. 1.
    G.E. Lucas, G.R. Odette, M. Sokolov, P. Spätig, T. Yamamoto, and P. Jung, J. Nucl. Mater. 307–311, 1600–1608 (2002).  https://doi.org/10.1016/S0022-3115(02)01171-6.CrossRefGoogle Scholar
  2. 2.
    M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix, Science 305, 986–990 (2004).CrossRefGoogle Scholar
  3. 3.
    M. Legros, D.S. Gianola, and C. Motz, MRS Bull. 35, 354–360 (2010).CrossRefGoogle Scholar
  4. 4.
    G. Lucas, J. Nucl. Mater. 117, 327–339 (1983).CrossRefGoogle Scholar
  5. 5.
    G.E. Lucas, Metall. Trans. A 21, 1105–1119 (1990).  https://doi.org/10.1007/BF02698242.CrossRefGoogle Scholar
  6. 6.
    R.L. Klueh, Nucl. Eng. Des. 2, 407–416 (1985).Google Scholar
  7. 7.
    X. Mao, H. Takahashi, and T. Kodaira, Scr. Metall. Mater. 25, 2487–2490 (1991).CrossRefGoogle Scholar
  8. 8.
    A. Okada, G.E. Lucas, and M. Kiritani, Trans. Jpn. Inst. Met. 29, 99–108 (1988).CrossRefGoogle Scholar
  9. 9.
    P. Hosemann, Scr. Mater. 143, 161–168 (2018).  https://doi.org/10.1016/j.scriptamat.2017.04.026.CrossRefGoogle Scholar
  10. 10.
    D.E.J. Armstrong, C.D. Hardie, J.S.K.L. Gibson, A.J. Bushby, P.D. Edmondson, and S.G. Roberts, J. Nucl. Mater. 462, 374–381 (2015).  https://doi.org/10.1016/j.jnucmat.2015.01.053.CrossRefGoogle Scholar
  11. 11.
    J.M. Wheeler, D.E.J. Armstrong, W. Heinz, and R. Schwaiger, Curr. Opin. Solid State Mater. Sci. 19, 354–366 (2015).  https://doi.org/10.1016/j.cossms.2015.02.002.CrossRefGoogle Scholar
  12. 12.
    D. Kiener, P. Hosemann, S.A. Maloy, and A.M. Minor, Nat. Mater. 10, 608–613 (2011).  https://doi.org/10.1038/nmat3055.CrossRefGoogle Scholar
  13. 13.
    D. Kiener, W. Grosinger, and G. Dehm, Scr. Mater. 60, 148–151 (2009).  https://doi.org/10.1016/j.scriptamat.2008.09.024.CrossRefGoogle Scholar
  14. 14.
    D. Kiener, A.M. Minor, O. Anderoglu, Y. Wang, S.A. Maloy, and P. Hosemann, J. Mater. Res. 27, 2724–2736 (2012).  https://doi.org/10.1557/jmr.2012.303.CrossRefGoogle Scholar
  15. 15.
    D. Kiener, C. Motz, and G. Dehm, Mater. Sci. Eng., A 505, 79–87 (2009).  https://doi.org/10.1016/j.msea.2009.01.005.CrossRefGoogle Scholar
  16. 16.
    P. Hosemann, J.G. Swadener, D. Kiener, G.S. Was, S.A. Maloy, and N. Li, J. Nucl. Mater. 375, 135–143 (2008).  https://doi.org/10.1016/j.jnucmat.2007.11.004.CrossRefGoogle Scholar
  17. 17.
    P. Hosemann, Development of ultra small scale mechanical testing and localized he implantation for nuclear applications, in: Transactions of the American Nuclear Society, New Orleans, Louisiana (2016).Google Scholar
  18. 18.
    D. Frazer, B. Shaffer, K. Roney, H. Lim, B. Gong, P. Peralta, and P. Hosemann, Nucl. Fuels 116, 2–5 (2017).Google Scholar
  19. 19.
    P. Hosemann, C. Shin, and D. Kiener, J. Mater. Res. 30, 1231–1245 (2015).  https://doi.org/10.1557/jmr.2015.26.CrossRefGoogle Scholar
  20. 20.
    D. Kiener, W. Grosinger, G. Dehm, and R. Pippan, Acta Mater. 56, 580–592 (2008).  https://doi.org/10.1016/j.actamat.2007.10.015.CrossRefGoogle Scholar
  21. 21.
    McMaster-Carr (n.d.). https://www.mcmaster.com/.
  22. 22.
    ASTM Committee on Mechanical Testing, Standard Test Methods for Tension Testing of Metallic Materials, ASTM Int. ASTM Stds. (2013) 1–28.  https://doi.org/10.1520/e0008.
  23. 23.
    ASTM International, ASTM A370-18, Standard Test Methods and Definitions for Mechanical Testing of Steel Products (2018).Google Scholar
  24. 24.
    J.R. Greer, J.Y. Kim, and M.J. Burek, J. Mater. 61, 19–25 (2009).Google Scholar
  25. 25.
    H.T. Vo, A. Reichardt, D. Frazer, N. Bailey, P. Chou, and P. Hosemann, J. Nucl. Mater. 493, 336–342 (2017).  https://doi.org/10.1016/j.jnucmat.2017.06.026.CrossRefGoogle Scholar
  26. 26.
    A.T. Jennings and J.R. Greer, Philos. Mag. 91, 1108–1120 (2011).  https://doi.org/10.1080/14786435.2010.505180.CrossRefGoogle Scholar
  27. 27.
    J.Y. Kim and J.R. Greer, Acta Mater. 57, 5245–5253 (2009).  https://doi.org/10.1016/j.actamat.2009.07.027.CrossRefGoogle Scholar
  28. 28.
    S.A. Maloy, M.R. James, G. Willcutt, W.F. Sommer, M. Sokolov, L.L. Snead, M.L. Hamilton, and F. Garner, J. Nucl. Mater. 296, 119–128 (2001).  https://doi.org/10.1016/S0022-3115(01)00514-1.CrossRefGoogle Scholar
  29. 29.
    D. Kaoumi and J. Liu, Mater. Sci. Eng., A 715, 73–82 (2018).  https://doi.org/10.1016/j.msea.2017.12.036.CrossRefGoogle Scholar
  30. 30.
    R.P. Babu, S. Irukuvarghula, A. Harte, and M. Preuss, Acta Mater. 120, 391–402 (2016).  https://doi.org/10.1016/j.actamat.2016.08.008.CrossRefGoogle Scholar
  31. 31.
    C.J. Szczepanski, S.K. Jha, P.A. Shade, R. Wheeler, and J.M. Larsen, Int. J. Fatigue 57, 131–139 (2013).  https://doi.org/10.1016/j.ijfatigue.2012.08.008.CrossRefGoogle Scholar
  32. 32.
    B.P. Kashyap and K. Tangri, Acta Metall. Mater. 43, 3971–3981 (1995).  https://doi.org/10.1016/0956-7151(95)00110-H.CrossRefGoogle Scholar
  33. 33.
    P. Hosemann, Y. Dai, E. Stergar, A.T. Nelson, and S.A. Maloy, J. Nucl. Sci. Technol. 48, 575–579 (2011).  https://doi.org/10.1080/18811248.2011.9711735.CrossRefGoogle Scholar
  34. 34.
    D. Kiener, C. Motz, T. Schöberl, M. Jenko, and G. Dehm, Adv. Eng. Mater. 8, 1119–1125 (2006).  https://doi.org/10.1002/adem.200600129.CrossRefGoogle Scholar
  35. 35.
    S. Brenner, Science 128, 569–575 (1958).CrossRefGoogle Scholar
  36. 36.
    W.D. Nix, Scr. Mater. 39, 545–554 (1998).CrossRefGoogle Scholar
  37. 37.
    A.T. Jennings and J.R. Greer, Philos. Mag. 91, 1108–1120 (2011).  https://doi.org/10.1080/14786435.2010.505180.CrossRefGoogle Scholar
  38. 38.
    D.M. Dimiduk, C. Woodward, R. LeSar, and M.D. Uchic, Science 312, 1188–1191 (2006).  https://doi.org/10.1126/science.1123889.CrossRefGoogle Scholar
  39. 39.
    J.R. Greer, W.C. Oliver, and W.D. Nix, Acta Mater. 53, 1821–1830 (2005).  https://doi.org/10.1016/j.actamat.2004.12.031.CrossRefGoogle Scholar
  40. 40.
    C.A. Volkert and E.T. Lilleodden, Philos. Mag. 86, 5567–5579 (2006).  https://doi.org/10.1080/14786430600567739.CrossRefGoogle Scholar
  41. 41.
    C.P. Frick, B.G. Clark, S. Orso, A.S. Schneider, and E. Arzt, Mater. Sci. Eng., A 489, 319–329 (2008).  https://doi.org/10.1016/j.msea.2007.12.038.CrossRefGoogle Scholar
  42. 42.
    D.S. Gianola and C. Eberl, JOM 61, 24–35 (2009).  https://doi.org/10.1007/s11837-009-0037-3.CrossRefGoogle Scholar
  43. 43.
    D. Jang and J.R. Greer, Nat. Mater. 9, 215–219 (2010).  https://doi.org/10.1038/nmat2622.CrossRefGoogle Scholar
  44. 44.
    X.W. Gu, C.N. Loynachan, Z. Wu, Y.-W. Zhang, D.J. Srolovitz, and J.R. Greer, Nano Lett. 12, 6385–6392 (2012).CrossRefGoogle Scholar
  45. 45.
    C. Shin, S. Lim, H.H. Jin, P. Hosemann, and J. Kwon, Mater. Sci. Eng., A 622, 67–75 (2015).  https://doi.org/10.1016/j.msea.2014.11.004.CrossRefGoogle Scholar
  46. 46.
    J. Chen, Y. Dai, F. Carsughi, W.F. Sommer, G.S. Bauer, and H. Ullmaier, J. Nucl. Mater. 275, 115–118 (1999).  https://doi.org/10.1016/S0022-3115(99)00147-6.CrossRefGoogle Scholar
  47. 47.
    J.G. Gigax, H. Vo, Q. McCulloch, M. Chancey, Y. Wang, S.A. Maloy, N. Li, and P. Hosemann, Scr. Mater. 170, 145–149 (2019).  https://doi.org/10.1016/j.scriptamat.2019.05.004.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.Department of Materials Science and EngineeringUniversity of California BerkeleyBerkeleyUSA

Personalised recommendations