Advertisement

JOM

pp 1–10 | Cite as

Parametric Shape Optimization for Combined Additive–Subtractive Manufacturing

  • Lorenzo TamelliniEmail author
  • Michele Chiumenti
  • Christian Altenhofen
  • Marco Attene
  • Oliver Barrowclough
  • Marco Livesu
  • Federico Marini
  • Massimiliano Martinelli
  • Vibeke Skytt
ICME-Based Design and Optimization of Materials for Additive Manufacturing
  • 27 Downloads

Abstract

In industrial practice, additive manufacturing (AM) processes are often followed by post-processing operations such as heat treatment, subtractive machining, milling, etc., to achieve the desired surface quality and dimensional accuracy. Hence, a given part must be 3D-printed with extra material to enable this finishing phase. This combined additive/subtractive technique can be optimized to reduce manufacturing costs by saving printing time and reducing material and energy usage. In this work, a numerical methodology based on parametric shape optimization is proposed for optimizing the thickness of the extra material, allowing for minimal machining operations while ensuring the finishing requirements. Moreover, the proposed approach is complemented by a novel algorithm for generating inner structures to reduce the part distortion and its weight. The computational effort induced by classical constrained optimization methods is alleviated by replacing both the objective and constraint functions by their sparse grid surrogates. Numerical results showcase the effectiveness of the proposed approach.

Notes

Acknowledgements

This work was funded by the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 680,448 CAxMan, Computer-Aided technologies for Additive Manufacturing.

References

  1. 1.
    J. Nocedal and S. Wright, Numerical Optimization, 1st ed. (New York: Springer, 1999).CrossRefGoogle Scholar
  2. 2.
    G. Allaire, F. Jouve, and A. Toader, J. Comput. Phys. 194, 363 (2004).MathSciNetCrossRefGoogle Scholar
  3. 3.
    E. Picelli, S. Townsend, C. Brampton, J. Norato, and A. Kim, Comput. Methods Appl Mech. Eng. 329, 1 (2018).CrossRefGoogle Scholar
  4. 4.
    Y. Wang and Z. Kang, Comput. Methods Appl Mech. Eng. 329, 553 (2018).CrossRefGoogle Scholar
  5. 5.
    C. Dapogny, R. Estevez, A. Faure, and G. Michailidis, Comput. Methods Appl Mech. Eng. 344, 626 (2019).CrossRefGoogle Scholar
  6. 6.
    F. Zwicke, M. Behr, and S. Elgeti, AIP Conf. Proc. 1896, 100001 (2017).CrossRefGoogle Scholar
  7. 7.
    G. Allaire, C. Dapogny, R. Estevez, A. Faure, and G. Michailidis, J. Comput. Phys. 351, 295 (2017).MathSciNetCrossRefGoogle Scholar
  8. 8.
    S. Cacace, E. Cristiani, and L. Rocchi, Appl. Math. Model. 44, 446 (2017).MathSciNetCrossRefGoogle Scholar
  9. 9.
    M. Chiumenti, E. Neiva, E. Salsi, M. Cervera, S. Baida, J. Moya, Z. Chen, C. Lee, and C. Davies, Addit. Manuf. 18, 171 (2017).CrossRefGoogle Scholar
  10. 10.
    E. Neiva, S. Badia, A.F. Martin, and M. Chiumenti, Int. J. Numer. Methods Eng. 119, 1098 (2019).CrossRefGoogle Scholar
  11. 11.
    H.-J. Bungartz and M. Griebel, Acta Numer. 13, 147 (2004).MathSciNetCrossRefGoogle Scholar
  12. 12.
    F. Nobile, L. Tamellini, and R. Tempone, Numer. Math. 134, 343 (2016).MathSciNetCrossRefGoogle Scholar
  13. 13.
    C. Altenhofen, M. Attene, O. Barrowclough, M. Chiumenti, M. Livesu, F. Marini, M. Martinelli, V. Skytt and L. Tamellini, Parametric shape optimization for combined additive-subtractive manufacturing,” (arXiv preprints, 2019). https://arxiv.org/abs/1907.01370. Accessed Oct. 2, 2019.
  14. 14.
    M. McKay, R. Beckman, and W. Conover, Technometrics 21, 239 (1979).MathSciNetGoogle Scholar
  15. 15.
    M. Buhmann, Radial Basis Functions: Theory and Implementations, 1st ed. (Cambridge: Cambridge University Press, 2003).CrossRefGoogle Scholar
  16. 16.
    F. Ballarin, A. Manzoni, A. Quarteroni, and G. Rozza, Int. J. Numer. Methods Eng. 102, 1136 (2014).CrossRefGoogle Scholar
  17. 17.
    C. Higham and D. Higham, Deep Learning: An Introduction for Applied Mathematicians (arXiv preprints, 2018). https://arxiv.org/abs/1801.05894. Accessed Oct. 2, 2019.
  18. 18.
    J. Valentin and D. Pflüger, Hierarchical Gradient-Based Optimization with B-Splines on Sparse Grids, Sparse Grids and ApplicationsStuttgart 2014, ed. J. Garcke, D. Pflüger (Springer 2016), p. 315.Google Scholar
  19. 19.
    E. Catmull and J. Clark, Comput. Aided Des. 10, 350 (1978).CrossRefGoogle Scholar
  20. 20.
    A. Fabri, M. Teillaud, CGAL, The Computational Geometry Algorithms Library (10ème Colloque National en Calcul des Structures, 2011), https://hal.archives-ouvertes.fr/CSMA2011/hal-00592685v1. Accessed Oct. 2, 2019.
  21. 21.
    P.K.L. Hachenberger, L. Kettner, and K. Mehlhorn, Comput. Geom 38, 64 (2007).MathSciNetCrossRefGoogle Scholar
  22. 22.
    R.Y.M. Laurent, Comput. Geom. Theory Appl. 38, 100 (2007).CrossRefGoogle Scholar
  23. 23.
    M. Chiumenti, X. Lin, M. Cervera, W. Lei, Y. Zheng, and W. Huang, Rapid Prototyp. J. 23, 448 (2017).CrossRefGoogle Scholar
  24. 24.
    E. Neiva, M. Chiumenti, M. Cervera, E. Salsi, G. Piscopo, S. Badia, A. Martin, Z. Chen, C. Lee and C. Davies, Numerical modelling of heat transfer and experimental validation in Powder-Bed Fusion with the Virtual Domain Approximation (arXiv preprints, 2018). https://arxiv.org/abs/1811.12372v4. Accessed Oct.2, 2019.
  25. 25.
    I. Setien, M. Chiumenti, S. van der Veen, M. San Sebastian, F. Garciandía, and A. Echeverría, Comput. Math. Appl. 78, 2282 (2019).MathSciNetCrossRefGoogle Scholar
  26. 26.
    M. Cervera, C. Agelet de Saracibar and M. Chiumenti, COMET: Coupled Mechanical and Thermal Analysis. Data Input Manual, Version 5.0 (CIMNE technical report IT-308, 2002). https://www.cimne.com/comet/cvdata/cntr1/dtos/mdia/COMET_Data_Input_manual.pdf. Accessed Oct. 2, 2019.
  27. 27.
    CIMNE, Technical University of Catalonia, GiD: the Personal Pre and Post-Processor (2002). http://gid.cimne.upc.edu. Accessed Oct. 2, 2019.
  28. 28.
    P.J. Besl and N.D. McKay, IEEE Trans. Pattern Anal. Mach. Intell. 14, 239 (1992).CrossRefGoogle Scholar
  29. 29.
    Docker Inc., Docker. www.docker.com. Accessed Oct. 2, 2019.
  30. 30.
    The SG++ Project, SG++ (2008). http://sgpp.sparsegrids.org. Accessed Oct. 2, 2019.
  31. 31.
    The CGAL Project, CGAL (1995). www.cgal.org. Accessed Oct. 2, 2019.
  32. 32.
    SINTEF Digital, GoTools: Geometry Toolkit. https://github.com/SINTEF-Geometry/GoTools (2018). Accessed Oct. 2, 2019.

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Lorenzo Tamellini
    • 1
    Email author
  • Michele Chiumenti
    • 2
  • Christian Altenhofen
    • 3
    • 4
  • Marco Attene
    • 5
  • Oliver Barrowclough
    • 6
  • Marco Livesu
    • 5
  • Federico Marini
    • 1
  • Massimiliano Martinelli
    • 1
  • Vibeke Skytt
    • 6
  1. 1.Consiglio Nazionale Delle Ricerche, Istituto di Matematica Applicata e Tecnologie Informatiche (CNR-IMATI)PaviaItaly
  2. 2.International Center for Numerical Methods in Engineering (CIMNE)Universidad Politécnica de CataluñaBarcelonaSpain
  3. 3.Fraunhofer Institute for Computer Graphics Research IGD, Interactive Engineering TechnologiesDarmstadtGermany
  4. 4.Interactive Graphics Systems GroupTechnische Universität DarmstadtDarmstadtGermany
  5. 5.Consiglio Nazionale Delle Ricerche, Istituto di Matematica Applicata e Tecnologie Informatiche (CNR-IMATI)GenovaItaly
  6. 6.SINTEF Digital, Mathematics and CyberneticsOsloNorway

Personalised recommendations