pp 1–10 | Cite as

On the Mechanism of Sodic Removal from Bauxite Residue and Bauxite Desilication Products (BDP) Using Acetic Acid

  • Sicheng Wang
  • Tuan Nguyen
  • Hong Peng
  • Longbin HuangEmail author
Bauxite to Aluminum: Advances, Automation, and Alternative Processes


Bauxite desilication products (BDPs) are fundamental causes of persistent alkalinity and salinity in bauxite residue. Previous studies have shown that significant amounts of acetic acid and Na+ were detected in the pore water of organic matter-amended and bacteria-regulated bauxite residue, implying the capability of acetic acid to alleviate the long-term residual alkalinity and salinity of bauxite residue. The present study aims to establish a fundamental understanding of the bauxite residue/BDP weathering mechanism using acetic acid as a case model of microbial-derived low-molecular-weight soluble organics. Large amounts of Na+ were released into the solution in treated bauxite residue, implying enhanced desalination of bauxite residue/BDP by acetic acid. Attenuated total reflectance—Fourier transform infrared spectroscopy, Raman spectroscopy, and nuclear magnetic resonance spectroscopy indicated the adsorption of acetate on the surface of BDP, which caused slight deformation of BDP’s cages and thus made encaged Na+ exchange easily with other cations. This mechanism of organic acid-mediated Na+ exchange may provide the key to unlocking the barrier of alkaline mineral weathering and subsequent development of soil-like properties for sustainable plant colonization.



SW thanks David Appleton and Ekaterina Strounina for bauxite residue and BDP sample analysis and Lachlan Robertson for helpful discussion. SW gratefully acknowledges the University of Queensland for the UQ-RTP and UQ Graduate School scholarships.

Supplementary material

11837_2019_3884_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1123 kb)


  1. 1.
    A.W. Bray, D.I. Stewart, R. Courtney, S.P. Rout, P.N. Humphreys, W.M. Mayes, and I.T. Burke, Environ. Sci. Technol. 52, 152 (2018).CrossRefGoogle Scholar
  2. 2.
    E. Di Carlo, C.R. Chen, R.J. Haynes, I.R. Phillips, and R. Courtney, Soil Res. 57, 419 (2019).CrossRefGoogle Scholar
  3. 3.
    K. Evans, J. Sustain. Met. 2, 316 (2016).CrossRefGoogle Scholar
  4. 4.
    J. Ren, J. Chen, L. Han, M. Wang, B. Yang, P. Du, and F. Li, Sci. Total Environ. 628, 1200 (2018).CrossRefGoogle Scholar
  5. 5.
    W. Liang, S.J. Couperthwaite, G. Kaur, C. Yan, D.W. Johnstone, and G.J. Millar, J. Colloid Interface Sci. 423, 158 (2014).CrossRefGoogle Scholar
  6. 6.
    T.C. Santini, J.L. Kerr, and L.A. Warren, J. Hazard. Mater. 293, 131 (2015).CrossRefGoogle Scholar
  7. 7.
    T.C. Santini, L.I. Malcolm, G.W. Tyson, and L.A. Warren, Environ. Sci. Technol. 50, 11164 (2016).CrossRefGoogle Scholar
  8. 8.
    T.C. Santini and Y.G. Peng, Environ. Sci. Technol. 51, 12592 (2017).CrossRefGoogle Scholar
  9. 9.
    F. You, L. Zhang, J. Ye, and L. Huang, Sci. Total Environ. 663, 216 (2019).CrossRefGoogle Scholar
  10. 10.
    M.K. Hamdy and F.S. Williams, J. Ind. Microbiol. Biotechnol. 27, 228 (2001).CrossRefGoogle Scholar
  11. 11.
    D.A. Rubinos, V. Valcárcel, G. Spagnoli, and M.T. Barral, JOM 69, 1607 (2017).CrossRefGoogle Scholar
  12. 12.
    M. Gräfe and C. Klauber, Hydrometallurgy 108, 46 (2011).CrossRefGoogle Scholar
  13. 13.
    N.J. Barrow, Aust. J. Agric. Res. 33, 275 (1982).CrossRefGoogle Scholar
  14. 14.
    C. Klauber, N. Harwood, R. Hockridge, and C. Middleton, Essential Readings in Light Metals: Volume 1 Alumina and Bauxite, ed. D. Donaldson and B.E. Raahauge (Cham: Springer, 2016), p. 951.CrossRefGoogle Scholar
  15. 15.
    G.J. Levy, M. Agassi, H.J.C. Smith, and R. Stern, Soil Sci. Soc. Am. J. 57, 803 (1993).CrossRefGoogle Scholar
  16. 16.
    J.B. Wehr, I. Fulton, and N.W. Menzies, Environ. Manag. 37, 297 (2006).CrossRefGoogle Scholar
  17. 17.
    J.W.C. Wong and G.E. Ho, J. Environ. Qual. 24, 461 (1995).CrossRefGoogle Scholar
  18. 18.
    M. Gräfe, G. Power, and C. Klauber, Hydrometallurgy 108, 60 (2011).CrossRefGoogle Scholar
  19. 19.
    H. Peng, M. Ding, and J. Vaughan, Ind. Eng. Chem. Res. 57, 10292 (2018).CrossRefGoogle Scholar
  20. 20.
    S. Luger, J. Felsche, and P. Fischer, Acta Crystallogr. Sect. C Cryst. Struct. Commun. 43, 1 (1987).CrossRefGoogle Scholar
  21. 21.
    I. Hassan, S.M. Antao, and J.B. Parise, Am. Miner. 91, 1117 (2006).CrossRefGoogle Scholar
  22. 22.
    C.A.R. Reyes, C. Williams, and O.M.C. Alarcón, Mater. Res. 16, 424 (2013).CrossRefGoogle Scholar
  23. 23.
    W. Depmeier, Rev. Miner. Geochem. 57, 203 (2005).CrossRefGoogle Scholar
  24. 24.
    S. Xue, F. Zhu, X. Kong, C. Wu, L. Huang, N. Huang, and W. Hartley, Environ. Sci. Pollut. Res. Int. 23, 1120 (2016).CrossRefGoogle Scholar
  25. 25.
    J.L. Drever and L.L. Stillings, Colloids Surf. Physicochem. Eng. Aspects 120, 167 (1997).CrossRefGoogle Scholar
  26. 26.
    D.E. Lazo, L.G. Dyer, and R.D. Alorro, Miner. Eng. 100, 115 (2017).CrossRefGoogle Scholar
  27. 27.
    K. Vermohlen, H. Lewandowski, H.D. Narres, and E. Koglin, Colloids Surf. Physicochem. Eng. Aspects 170, 181 (2000).CrossRefGoogle Scholar
  28. 28.
    J. Felsche and S. Luger, Ber. Bunsenges. Phys. Chem. 90, 731 (1986).CrossRefGoogle Scholar
  29. 29.
    G. Engelhardt, J. Felsche, and P. Sieger, J. Am. Chem. Soc. 114, 1173 (1992).CrossRefGoogle Scholar
  30. 30.
    V.J. Alstadt, J.D. Kubicki, and M.A. Freedman, J. Phys. Chem. A 120, 8339 (2016).CrossRefGoogle Scholar
  31. 31.
    Y. Zhang, C. Zhu, F. Liu, Y. Yuan, H. Wu, and A. Li, Sci. Total Environ. 646, 265 (2019).CrossRefGoogle Scholar
  32. 32.
    A. Charalambos, University of Manchester, Manchester, UK, PhD thesis, 2010Google Scholar
  33. 33.
    K. Morimoto, S. Anraku, J. Hoshino, T. Yoneda, and T. Sato, J. Colloid Interface Sci. 384, 99 (2012).CrossRefGoogle Scholar
  34. 34.
    C. Günther, H. Richter, I. Voigt, A. Michaelis, H. Tzscheutschler, R. Krause-Rehberg, and J.M. Serra, Microporous Mesoporous Mater. 214, 1 (2015).CrossRefGoogle Scholar
  35. 35.
    A.M. Mofrad, C. Peixoto, J. Blumeyer, J. Liu, H.K. Hunt, and K.D. Hammond, J. Phys. Chem. C 122, 24765 (2018).CrossRefGoogle Scholar
  36. 36.
    N.V. Chukanov, I.V. Pekov, L.V. Olysych, N.V. Zubkova, and M.F. Vigasina, Can. Mineral. 49, 1151 (2012).CrossRefGoogle Scholar
  37. 37.
    R.E. Blake and L.M. Walter, Chem. Geol. 132, 91 (1996).CrossRefGoogle Scholar
  38. 38.
    L. Chen, W. Zhu, K. Lin, N. Hu, Y. Yu, X. Zhou, L.F. Yuan, S.M. Hu, and Y. Luo, J. Phys. Chem. A 119, 3209 (2015).CrossRefGoogle Scholar
  39. 39.
    M. Król, A. Koleżyński, A. Mikuła, and W. Mozgawa, Molecular Spectroscopy-Experiment and Theory: From Molecules to Functional Materials, ed. A. Koleżyński and M. Król (Cham: Springer, 2019), p. 301.CrossRefGoogle Scholar
  40. 40.
    J. Xu, Q. Wang, S. Li, and F. Deng, Solid-State NMR in Zeolite Catalysis, 1st ed. (Singapore: Springer, 2019), p. 159.CrossRefGoogle Scholar
  41. 41.
    F. Babonneau, N. Baccile, G. Laurent, J. Maquet, T. Azaïs, C. Gervais, and C. Bonhomme, C. R. Chimie 13, 58 (2010).CrossRefGoogle Scholar
  42. 42.
    G. Engelhardt, R. Radeglia, H. Jancke, E. Lippmaa, and M. Magi, Org. Magn. Reson. 5, 561 (1973).CrossRefGoogle Scholar
  43. 43.
    K. Yamamoto, Y. Sakata, Y. Nohara, Y. Takahashi, and T. Tatsumi, Science 300, 470 (2003).CrossRefGoogle Scholar
  44. 44.
    C. Li, W. Liu, and Y. Ma, J. Mol. Liq. 289, 111052 (2019).CrossRefGoogle Scholar
  45. 45.
    M.M. Emamjomeh, M. Sivakumar, and A.S. Varyani, Desalination 275, 102 (2011).CrossRefGoogle Scholar
  46. 46.
    D. Freude, T. Frohlich, and H. Pfeifer, Zeolites 3, 171 (1982).CrossRefGoogle Scholar
  47. 47.
    I. Jum’h, A. Telfah, J. Lambert, M. Gogiashvili, H. Al-Taani, and R. Hergenröder, J. Mol. Liq. 227, 106 (2017).CrossRefGoogle Scholar
  48. 48.
    G. Engelhardt, P. Sieger, and J. Felsche, Anal. Chim. Acta 283, 967 (1993).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Sicheng Wang
    • 1
  • Tuan Nguyen
    • 1
  • Hong Peng
    • 2
  • Longbin Huang
    • 1
    Email author
  1. 1.Centre for Mined Land Rehabilitation, Sustainable Minerals InstituteThe University of QueenslandBrisbaneAustralia
  2. 2.School of Chemical EngineeringThe University of QueenslandBrisbaneAustralia

Personalised recommendations