pp 1–10 | Cite as

Recent Studies on the Microstructural Response of Nanotwinned Metals to In Situ Heavy Ion Irradiation

  • K. Y. YuEmail author
  • C. Fan
  • Y. Chen
  • J. Li
  • X. ZhangEmail author
Advanced Characterization and Testing of Irradiated Materials


Nanotwinned metals are potential radiation-tolerant materials because they contain high-density coherent and incoherent twin boundaries that may serve as sinks to radiation-induced defects. The behavior of nanotwinned metals subject to ex situ and in situ irradiation remains however largely unexploited. This article offers an overview of the recent studies on the microstructural response of nanotwinned metals to in situ heavy ion irradiation, focusing on the interactions of defect clusters with twin boundaries and the radiation-induced twin boundary migration. Several radiation-tolerant nanotwinned metals are also highlighted.



K.Y. acknowledges financial support from the National Natural Science Foundation of China (NSFC 51871241). X.Z. acknowledges financial support from NSF-DMR-Metallic Materials and Nanostructures Program under Grant No. 1643915 and partial support by NSF under Grant Nos. 1611380 and 1728419. The IVEM facility at Argonne National Laboratory is supported by the DOE Office of Nuclear Energy, USA.


  1. 1.
    S.J. Zinkle and G. Was, Acta Mater. 61, 735–758 (2013).CrossRefGoogle Scholar
  2. 2.
    G.S. Was, J. Nucl. Mater. 367, 11–20 (2007).CrossRefGoogle Scholar
  3. 3.
    B. Singh, A. Horsewell, P. Toft, and D. Edwards, J. Nucl. Mater. 224, 131–140 (1995).CrossRefGoogle Scholar
  4. 4.
    S.J. Zinkle and K. Farrell, J. Nucl. Mater. 168, 262–267 (1989).CrossRefGoogle Scholar
  5. 5.
    B.N. Singh, M. Eldrup, S. Zinkle, and S. Golubov, Philos. Mag. A 82, 1137–1158 (2002).CrossRefGoogle Scholar
  6. 6.
    M.L. Jenkins and M.A. Kirk, Characterisation of radiation damage by transmission electron microscopy (Boca Raton: CRC Press, 2000).CrossRefGoogle Scholar
  7. 7.
    S. Ishino, J. Nucl. Mater. 251, 225–236 (1997).CrossRefGoogle Scholar
  8. 8.
    J. Hinks, Nucl. Instrum. Methods Phys. Res. Sect. B 267, 3652–3662 (2009).CrossRefGoogle Scholar
  9. 9.
    D. Pashley and A. Presland, Philos. Mag. 6, 1003–1012 (1961).CrossRefGoogle Scholar
  10. 10.
    B. Eyre, J. Phys. F Met. Phys. 3, 422 (1973).CrossRefGoogle Scholar
  11. 11.
    Y. Matsukawa and S.J. Zinkle, Science 318, 959–962 (2007).CrossRefGoogle Scholar
  12. 12.
    C. Taylor, B. Muntifering, C. Snow, K. Hattar, and D. Senor, Microsc. Microanal. 23, 2216–2217 (2017).CrossRefGoogle Scholar
  13. 13.
    I. Beyerlein, A. Caro, M. Demkowicz, N. Mara, A. Misra, and B. Uberuaga, Mater. Today 16, 443–449 (2013).CrossRefGoogle Scholar
  14. 14.
    X. Zhang, K. Hattar, Y. Chen, L. Shao, J. Li, C. Sun, K. Yu, N. Li, M.L. Taheri, and H. Wang, Prog. Mater. Sci. 96, 217–321 (2018).CrossRefGoogle Scholar
  15. 15.
    T. Shen, Nucl. Instrum. Methods Phys. Res. Sect. B 266, 921–925 (2008).CrossRefGoogle Scholar
  16. 16.
    S.J. Zinkle and L.L. Snead, Annu. Rev. Mater. Res. 44, 241–267 (2014).CrossRefGoogle Scholar
  17. 17.
    I. Beyerlein, M. Demkowicz, A. Misra, and B. Uberuaga, Prog. Mater Sci. 74, 125–210 (2015).CrossRefGoogle Scholar
  18. 18.
    K.Y. Yu, Y. Liu, C. Sun, H. Wang, L. Shao, E. Fu, and X. Zhang, J. Nucl. Mater. 425, 140–146 (2012).CrossRefGoogle Scholar
  19. 19.
    G. Vetterick, O. El-Atwani, J.K. Baldwin, M. Tonks, and M. Taheri, J. Nucl. Mater. 481, 62–65 (2016).CrossRefGoogle Scholar
  20. 20.
    C. Sun, S. Zheng, C. Wei, Y. Wu, L. Shao, Y. Yang, K. Hartwig, S. Maloy, S. Zinkle, and T. Allen, Sci. Rep. 5, 7801 (2015).CrossRefGoogle Scholar
  21. 21.
    D. Kaoumi, A. Motta, and R. Birtcher, J. Appl. Phys. 104, 073525 (2008).CrossRefGoogle Scholar
  22. 22.
    G. Cheng, W. Xu, Y. Wang, A. Misra, and Y. Zhu, Scr. Mater. 123, 90–94 (2016).CrossRefGoogle Scholar
  23. 23.
    C. Du, S. Jin, Y. Fang, J. Li, S. Hu, T. Yang, Y. Zhang, J. Huang, G. Sha, and Y. Wang, Nat. Commun. 9, 5389 (2018).CrossRefGoogle Scholar
  24. 24.
    K.Y. Yu, Y. Chen, J. Li, Y. Liu, H. Wang, M.A. Kirk, M. Li, and X. Zhang, Nano Lett. 16, 7481–7489 (2016).CrossRefGoogle Scholar
  25. 25.
    M. Demkowicz, R. Hoagland, and J. Hirth, Phys. Rev. Lett. 100, 136102 (2008).CrossRefGoogle Scholar
  26. 26.
    A. Misra, M. Demkowicz, X. Zhang, and R. Hoagland, JOM 59, 62–65 (2007).CrossRefGoogle Scholar
  27. 27.
    K.Y. Yu, C. Sun, Y. Chen, Y. Liu, H. Wang, M. Kirk, M. Li, and X. Zhang, Philos. Mag. 93, 3547–3562 (2013).CrossRefGoogle Scholar
  28. 28.
    Y. Chen, N. Li, D.C. Bufford, J. Li, K. Hattar, H. Wang, and X. Zhang, J. Nucl. Mater. 475, 274–279 (2016).CrossRefGoogle Scholar
  29. 29.
    T. Höchbauer, A. Misra, K. Hattar, and R. Hoagland, J. Appl. Phys. 98, 123516 (2005).CrossRefGoogle Scholar
  30. 30.
    E. Fu, J. Carter, G. Swadener, A. Misra, L. Shao, H. Wang, and X. Zhang, J. Nucl. Mater. 385, 629–632 (2009).CrossRefGoogle Scholar
  31. 31.
    N. Li, E. Fu, H. Wang, J. Carter, L. Shao, S. Maloy, A. Misra, and X. Zhang, J. Nucl. Mater. 389, 233–238 (2009).CrossRefGoogle Scholar
  32. 32.
    K.Y. Yu, Z. Fan, Y. Chen, M. Song, Y. Liu, H. Wang, M. Kirk, M. Li, and X. Zhang, Mater. Res. Lett. 3, 35–42 (2015).CrossRefGoogle Scholar
  33. 33.
    K.Y. Yu, Y. Liu, E. Fu, Y. Wang, M. Myers, H. Wang, L. Shao, and X. Zhang, J. Nucl. Mater. 440, 310–318 (2013).CrossRefGoogle Scholar
  34. 34.
    G. Odette, M. Alinger, and B. Wirth, Annu. Rev. Mater. Res. 38, 471–503 (2008).CrossRefGoogle Scholar
  35. 35.
    S. Ukai and M. Fujiwara, J. Nucl. Mater. 307, 749–757 (2002).CrossRefGoogle Scholar
  36. 36.
    S. Ukai, M. Harada, H. Okada, M. Inoue, S. Nomura, S. Shikakura, K. Asabe, T. Nishida, and M. Fujiwara, J. Nucl. Mater. 204, 65–73 (1993).CrossRefGoogle Scholar
  37. 37.
    E.M. Bringa, J. Monk, A. Caro, A. Misra, L. Zepeda-Ruiz, M. Duchaineau, F. Abraham, M. Nastasi, S. Picraux, and Y. Wang, Nano Letters 12, 3351–3355 (2011).CrossRefGoogle Scholar
  38. 38.
    E. Fu, M. Caro, L. Zepeda-Ruiz, Y. Wang, K. Baldwin, E. Bringa, M. Nastasi, and A. Caro, Appl. Phys. Lett. 101, 191607 (2012).CrossRefGoogle Scholar
  39. 39.
    J. Li, C. Fan, J. Ding, S. Xue, Y. Chen, Q. Li, H. Wang, and X. Zhang, Sci. Rep. 7, 39484 (2017).CrossRefGoogle Scholar
  40. 40.
    C. Sun, D. Bufford, Y. Chen, M. Kirk, Y. Wang, M. Li, H. Wang, S. Maloy, and X. Zhang, Sci. Rep. 4, 3737 (2014).CrossRefGoogle Scholar
  41. 41.
    L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, Science 304, 422–426 (2004).CrossRefGoogle Scholar
  42. 42.
    O. Anderoglu, A. Misra, H. Wang, F. Ronning, M. Hundley, and X. Zhang, Appl. Phys. Lett. 93, 083108 (2008).CrossRefGoogle Scholar
  43. 43.
    D. Bufford, H. Wang, and X. Zhang, Acta Mater. 59, 93–101 (2011).CrossRefGoogle Scholar
  44. 44.
    I.J. Beyerlein, X. Zhang, and A. Misra, Annu. Rev. Mater. Res. 44, 329–363 (2014).CrossRefGoogle Scholar
  45. 45.
    M.J. Demkowicz, O. Anderoglu, X. Zhang, and A. Misra, J. Mater. Res. 26, 1666–1675 (2011).CrossRefGoogle Scholar
  46. 46.
    W. Han, M. Demkowicz, E. Fu, Y. Wang, and A. Misra, Acta Mater. 60, 6341–6351 (2012).CrossRefGoogle Scholar
  47. 47.
    R. Segall, Acta Metall. 12, 117–119 (1964).CrossRefGoogle Scholar
  48. 48.
    A.H. King and D. Smith, Philos. Mag. A 42, 495–512 (1980).CrossRefGoogle Scholar
  49. 49.
    M. Makin, A. Whapham, and F. Minter, Philos. Mag. 6, 465–468 (1961).CrossRefGoogle Scholar
  50. 50.
    D. Norris, Philos. Mag. 23, 135–152 (1971).CrossRefGoogle Scholar
  51. 51.
    R. Jahn and A. King, Philos. Mag. A 54, L3–L7 (1986).CrossRefGoogle Scholar
  52. 52.
    M. Niewczas and R. Hoagland, Philos. Mag. 89, 727–746 (2009).CrossRefGoogle Scholar
  53. 53.
    K.Y. Yu, D. Bufford, C. Sun, Y. Liu, H. Wang, M. Kirk, M. Li, and X. Zhang, Nat. Commun. 4, 1377 (2013).CrossRefGoogle Scholar
  54. 54.
    Y. Chen, J. Li, K.Y. Yu, H. Wang, M. Kirk, M. Li, and X. Zhang, Acta Mater. 111, 148–156 (2016).CrossRefGoogle Scholar
  55. 55.
    J. Li, K.Y. Yu, Y. Chen, M. Song, H. Wang, M. Kirk, M. Li, and X. Zhang, Nano Letters 15, 2922–2927 (2015).CrossRefGoogle Scholar
  56. 56.
    K.Y. Yu, D. Bufford, F. Khatkhatay, H. Wang, M. Kirk, and X. Zhang, Scr. Mater. 69, 385–388 (2013).CrossRefGoogle Scholar
  57. 57.
    Y. Chen, H. Wang, M.A. Kirk, M. Li, J. Wang, and X. Zhang, Scr. Mater. 130, 37–41 (2017).CrossRefGoogle Scholar
  58. 58.
    Y. Chen, K.Y. Yu, Y. Liu, S. Shao, H. Wang, M. Kirk, J. Wang, and X. Zhang, Nat. Commun. 6, 7036 (2015).CrossRefGoogle Scholar
  59. 59.
    Y. Chen, X. Zhang, and J. Wang, JOM 68, 235–241 (2016).CrossRefGoogle Scholar
  60. 60.
    C. Fan, Y. Chen, J. Li, J. Ding, H. Wang, and X. Zhang, J. Nucl. Mater. 496, 293–300 (2017).CrossRefGoogle Scholar
  61. 61.
    C. Fan, Q. Li, J. Ding, Y. Liang, Z. Shang, J. Li, R. Su, J. Cho, D. Chen, and Y. Wang, Acta Mater. 165, 142–152 (2019).CrossRefGoogle Scholar
  62. 62.
    C. Fan, D. Xie, J. Li, Z. Shang, Y. Chen, S. Xue, J. Wang, M. Li, A. El-Azab, and H. Wang, Acta Mater. 167, 248–256 (2019).CrossRefGoogle Scholar
  63. 63.
    J. Li, Y. Chen, H. Wang, and X. Zhang, Metall. Mater. Trans. A 48, 1466–1473 (2017).CrossRefGoogle Scholar
  64. 64.
    J. Li, D. Xie, S. Xue, C. Fan, Y. Chen, H. Wang, J. Wang, and X. Zhang, Acta Mater. 151, 395–405 (2018).CrossRefGoogle Scholar
  65. 65.
    N. Li, J. Wang, J. Huang, A. Misra, and X. Zhang, Scr. Mater. 64, 149–152 (2011).CrossRefGoogle Scholar
  66. 66.
    X. Xiao, D. Song, H. Chu, J. Xue, and H. Duan, Int. J. Plast. 74, 110–126 (2015).CrossRefGoogle Scholar
  67. 67.
    J. Du, Z. Wu, E. Fu, Y. Liang, X. Wang, P. Wang, K. Yu, X. Ding, M. Li, and M. Kirk, Sci. Technol. Adv. Mater. 19, 212–220 (2018).CrossRefGoogle Scholar
  68. 68.
    C. Fan, J. Li, Z. Fan, H. Wang, and X. Zhang, Metall. Mater. Trans. A 48, 5172–5180 (2017).CrossRefGoogle Scholar
  69. 69.
    G.M. de Bellefon, I. Robertson, T. Allen, J.-C. van Duysen, and K. Sridharan, Scr. Mater. 159, 123–127 (2019).CrossRefGoogle Scholar
  70. 70.
    J. Wang, O. Anderoglu, J. Hirth, A. Misra, and X. Zhang, Appl. Phys. Lett. 95, 021908 (2009).CrossRefGoogle Scholar
  71. 71.
    J. Wang, N. Li, and A. Misra, Philos. Mag. 93, 315–327 (2013).CrossRefGoogle Scholar
  72. 72.
    J. Wang and H. Huang, Appl. Phys. Lett. 88, 203112 (2006).CrossRefGoogle Scholar
  73. 73.
    J. Wang, N. Li, O. Anderoglu, X. Zhang, A. Misra, J. Huang, and J. Hirth, Acta Mater. 58, 2262–2270 (2010).CrossRefGoogle Scholar
  74. 74.
    J. Wang, A. Misra, and J. Hirth, Phys. Rev. B 83, 064106 (2011).CrossRefGoogle Scholar
  75. 75.
    Y. Wang and M. Sui, Appl. Phys. Lett. 94, 021909 (2009).CrossRefGoogle Scholar
  76. 76.
    Y.M. Wang, F. Sansoz, T. LaGrange, R.T. Ott, J. Marian, T.W. Barbee Jr, and A.V. Hamza, Nat. Mater. 12, 697–702 (2013).CrossRefGoogle Scholar
  77. 77.
    M. Kiritani, Story of stacking fault tetrahedra. Mater. Chem. Phys. 50, 133–138 (1997).CrossRefGoogle Scholar
  78. 78.
    R. Schäublin, Z. Yao, N. Baluc, and M. Victoria, Philos. Mag. 85, 769–777 (2005).CrossRefGoogle Scholar
  79. 79.
    B.N. Singh, S.I. Golubov, H. Trinkaus, D.J. Edwards, and M. Eldrup, J. Nucl. Mater. 328, 77–87 (2004).CrossRefGoogle Scholar
  80. 80.
    N. Li, J. Wang, A. Misra, X. Zhang, J. Huang, and J. Hirth, Acta Mater. 59, 5989–5996 (2011).CrossRefGoogle Scholar
  81. 81.
    Y. Liu, J. Jian, Y. Chen, H. Wang, and X. Zhang, Appl. Phys. Lett. 104, 231910 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringChina University of PetroleumBeijingChina
  2. 2.School of Materials EngineeringPurdue UniversityWest LafayetteUSA
  3. 3.Department of Mechanical Engineering and Engineering ScienceUniversity of North CarolinaCharlotteUSA

Personalised recommendations