Advertisement

JOM

pp 1–7 | Cite as

Chemical Texturization Processes for Non-conventional Silicon Substrates for Silicon Heterojunction Solar Cell Applications

  • Rocío BarrioEmail author
  • Nieves Gonzalez
  • Julio Cárabe
  • Jose Javier Gandía
7th European Conference on Renewable Energy Systems
  • 8 Downloads

Abstract

The present work addresses the exhaustive study of the surfaces of multicrystalline silicon wafers after being subjected to a texturization process for silicon heterojunction solar cell applications. The investigations described include the effect that the time of isotropic etching based on combinations of hydrofluoric and nitric acids has on the reflectance, the morphology of the surfaces and the surface recombination through the evolution of the implicit open-circuit voltage. The influence of previous treatments and the elimination of porous silicon or silicon oxide formed on wafer surfaces as a consequence of these texturization processes are also addressed. Textured multicrystalline silicon wafer surfaces with a good uniformity and low weighted hemispherical reflectances (23–24%) have been achieved with short etching times. These texturization processes have also been tested on upgraded metallurgical silicon wafers, resulting in weighted hemispherical reflectance values around 23%, but at the cost of the appearance of important surface defects.

Notes

Acknowledgements

This work has been partially supported by the Spanish Ministry of Economy and Competitiveness under Project CHENOC (ENE2016-78933-C4-3-R). The authors would like to thank the Unit of Microstructural and Microanalysis Characterization of CIEMAT for SEM and XPS measurements.

References

  1. 1.
    I.T. Roadmap, International Technology Roadmap for Photovoltaic (ITRPV) 2014, Itrpv. 1. (2015)Google Scholar
  2. 2.
    W. Van Sark, L. Korte, and F. Roca, Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells (Berlin: Springer, 2012), pp. 1–43.CrossRefGoogle Scholar
  3. 3.
    K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, IEEE J. Photovolt. 4, 6 (2014).CrossRefGoogle Scholar
  4. 4.
    M. Taguchii, K. Kawamoto, T. Tsuge, T. Baba, H. Sakata, M. Morizane, K. Uchihashi, N. Nakamura, S. Kiyama, and O. Oota, Prog. Photovolt. Res. Appl. 8, 503 (2000).CrossRefGoogle Scholar
  5. 5.
    J. Degoulange, C. Trassy, and S. Martinuzzi, Sol. Energy Mater. Sol. Cells 92, 1269 (2008).  https://doi.org/10.1016/j.solmat.2008.04.020.CrossRefGoogle Scholar
  6. 6.
    R. Barrio, N. González, J. Cárabe, and J.J. Gandía, Sol. Energy 86, 845 (2012).CrossRefGoogle Scholar
  7. 7.
    R. Barrio, N. González, J. Cárabe and J.J. Gandía, 25th European Photovoltaic Solar Energy Conference and Exhibition/5th World Conference on Photovoltaic Energy Conversion, 6–10 Sept. 2010, Val., SpainGoogle Scholar
  8. 8.
    R. Barrio, N. González, J. Cárabe, and J.J. Gandía, Mater. Sci. Semicond. Process. 16, 1 (2013).CrossRefGoogle Scholar
  9. 9.
    S. Zaynabidinov, R. Aliev, M. Muydinova, and B. Urmanov, Appl. Sol. Energy 54, 395 (2018).  https://doi.org/10.3103/S0003701X1806018X.CrossRefGoogle Scholar
  10. 10.
    K. Kim, S.K. Dhungel, S. Jung, D. Mangalaraj, and J.Ã. Yi, Sol. Energy Mater. Sol. Cells 92, 960 (2008).  https://doi.org/10.1016/j.solmat.2008.02.036.CrossRefGoogle Scholar
  11. 11.
    Y. Cheng, J. Ho, S. Tsai, Z. Ye, W. Lee, D. Hwang, S. Chang, C. Chang, and K.L. Wang, Sol. Energy 85, 87 (2011).  https://doi.org/10.1016/j.solener.2010.10.020.CrossRefGoogle Scholar
  12. 12.
    M. Mews, T. Schulze, N. Mingirulli, and L. Korte, Energy Procedia 38, 855 (2013).CrossRefGoogle Scholar
  13. 13.
    A. Cuevas and D. Macdonald, Sol. Energy 76, 255 (2004).  https://doi.org/10.1016/j.solener.2003.07.033.CrossRefGoogle Scholar
  14. 14.
    R. Jayakrishnan, S. Gandhi, and P. Suratkar, Mater. Sci. Semicond. Process. 14, 223 (2011).CrossRefGoogle Scholar
  15. 15.
    P. Drummond, A. Kshirsagar, and J. Ruzyllo, Solid-State Electron. 55, 29 (2011).CrossRefGoogle Scholar
  16. 16.
    G. Kulesza, P. Panek, and P. Zięba, Arch. Civ. Mech. Eng. 14, 595 (2014).CrossRefGoogle Scholar
  17. 17.
    E. Stensrud, H. Jorgen, D. Nilsen and A. Holt. Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference (2005).  https://doi.org/10.1109/pvsc.2005.1488381
  18. 18.
    R. Barrio, C. Maffiotte, J.J. Gandía, and J. Cárabe, J. Non-Cryst. Solids 352, 945 (2006).CrossRefGoogle Scholar
  19. 19.
    A. Ulyashin, M. Scherff, R. Hussein, M. Gao, R. Job, and W.R. Fahrner, Sol. Energy Mater. Sol. Cells 74, 195 (2002).  https://doi.org/10.1016/S0927-0248(02)00064-8.CrossRefGoogle Scholar
  20. 20.
    Z. Xi, D. Yang, W. Dan, C. Jun, X. Li, and D. Que, Semicond. Sci. Technol. (2004).  https://doi.org/10.1088/0268-1242/19/3/035.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Renewable-Energy DepartmentCIEMATMadridSpain

Personalised recommendations