pp 1–10 | Cite as

Effects of Al and Ti Additions on Irradiation Behavior of FeMnNiCr Multi-Principal-Element Alloy

  • Andrew Hoffman
  • Li He
  • Matthew Luebbe
  • Hans Pommerenke
  • Jiaqi Duan
  • Peipei Cao
  • Kumar Sridharan
  • Zhaoping LuEmail author
  • Haiming WenEmail author
Advanced Characterization and Testing of Irradiated Materials


Two Co-free multi-principal-element alloys (MPEAs), viz. single-phase face-centered cubic (FCC) Fe30Ni30Mn30Cr10 and (Fe30Ni30Mn30Cr10)94Ti2Al4 (all in atomic percent) with FCC matrix containing Ni-Ti-Al enriched L12 (ordered FCC) secondary phase (γ′), have been developed and investigated. The alloys were ion irradiated at 300°C and 500°C to peak damage of 120 displacements per atom (dpa). Compared with the (Fe30Ni30Mn30Cr10)94Ti2Al4 alloy, in the Fe30Ni30Mn30Cr10 alloy, the dislocation loops were smaller, with a higher number density. The difference in loop size between the two MPEAs was attributed to the addition of Ti to the matrix, which was anticipated to lower the stacking fault energy and stabilize the faulted Frank loops. The γ′ phase showed good stability under irradiation, with no new γ′ precipitation or growth in existing precipitates. Both alloys showed similar irradiation-induced hardening at 300°C, but the (Fe30Ni30Mn30Cr10)94Ti2Al4 alloy exhibited lower irradiation-induced hardening at 500°C compared with the Fe30Ni30Mn30Cr10 alloy.



This research was financially supported by the .S Department of Energy, Office of Nuclear Energy through the Nuclear Science User Facilities (NSUF)—Rapid Turnabout Experiment (RTE) Program (Award No. 17-865). Partial support for Andrew Hoffman, Hans Pommerenke, and Haiming Wen came from the US Nuclear Regulatory Commission (NRC) Faculty Development Program (Award No. NRC 31310018M0044). Nathan Curtis and Victor DeLibera are thanked for their assistance with sample preparation.


  1. 1.
    S.J. Zinkle and G.S. Was, Acta Mater. 61, 735 (2013).CrossRefGoogle Scholar
  2. 2.
    S.J. Zinkle, Advanced irradiation-resistant materials for generation IV nuclear reactors (Amsterdam: Elsevier Ltd, 2016).Google Scholar
  3. 3.
    M.H. Tsai and J.W. Yeh, Mater. Res. Lett. 2, 107 (2014).CrossRefGoogle Scholar
  4. 4.
    D.B. Miracle and O.N. Senkov, Acta Mater. 122, 448 (2017).CrossRefGoogle Scholar
  5. 5.
    Y. Shi, B. Yang, and P. Liaw, Metals (Basel) 7, 43 (2017).CrossRefGoogle Scholar
  6. 6.
    Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Prog. Mater Sci. 61, 1 (2014).CrossRefGoogle Scholar
  7. 7.
    M.R. He, S. Wang, K. Jin, H. Bei, K. Yasuda, S. Matsumura, K. Higashida, and I.M. Robertson, Scr. Mater. 125, 5 (2016).CrossRefGoogle Scholar
  8. 8.
    N.A.P.K. Kumar, C. Li, K.J. Leonard, H. Bei, and S.J. Zinkle, Acta Mater. 113, 230 (2016).CrossRefGoogle Scholar
  9. 9.
    W.Y. Chen, X. Liu, Y. Chen, J.W. Yeh, K.K. Tseng, and K. Natesan, J. Nucl. Mater. 510, 421 (2018).CrossRefGoogle Scholar
  10. 10.
    F. Granberg, K. Nordlund, M.W. Ullah, K. Jin, C. Lu, H. Bei, L.M. Wang, F. Djurabekova, W.J. Weber, and Y. Zhang, Phys. Rev. Lett. 116, 1 (2016).CrossRefGoogle Scholar
  11. 11.
    D.S. Aidhy, C. Lu, K. Jin, H. Bei, Y. Zhang, L. Wang, and W.J. Weber, Acta Mater. 99, 69 (2015).CrossRefGoogle Scholar
  12. 12.
    J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, and Z.P. Lu, Acta Mater. 102, 187 (2016).CrossRefGoogle Scholar
  13. 13.
    Z. Fu, L. Jiang, J.L. Wardini, B.E. MacDonald, H. Wen, W. Xiong, D. Zhang, Y. Zhou, T.J. Rupert, W. Chen, and E.J. Lavernia, Sci. Adv. 4, eaat8712 (2018).CrossRefGoogle Scholar
  14. 14.
    T. Murakumo, T. Kobayashi, Y. Koizumi, and H. Harada, Acta Mater. 52, 3737 (2004).CrossRefGoogle Scholar
  15. 15.
    Y.Q. Chen, E. Francis, J. Robson, M. Preuss, and S.J. Haigh, Acta Mater. 85, 199 (2015).CrossRefGoogle Scholar
  16. 16.
    Y. Wu, W.H. Liu, X.L. Wang, D. Ma, A.D. Stoica, T.G. Nieh, Z.B. He, and Z.P. Lu, Appl. Phys. Lett. 104, 051910 (2014).CrossRefGoogle Scholar
  17. 17.
    F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P. George, Acta Mater. 61, 5743 (2013).CrossRefGoogle Scholar
  18. 18.
    B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, Science 345, 1153 (2014).CrossRefGoogle Scholar
  19. 19.
    T. Yang, S. Xia, S. Liu, C. Wang, S. Liu, Y. Fang, Y. Zhang, J. Xue, S. Yan, and Y. Wang, Sci. Rep. 6, 1 (2016).CrossRefGoogle Scholar
  20. 20.
    S.Q. Xia, X. Yang, T.F. Yang, S. Liu, and Y. Zhang, JOM 67, 2340 (2015).CrossRefGoogle Scholar
  21. 21.
    B. Kombaiah, K. Jin, H. Bei, P.D. Edmondson, and Y. Zhang, Mater. Des. 160, 1208 (2018).CrossRefGoogle Scholar
  22. 22.
    J.F. Ziegler, M.D. Ziegler, and J.P. Biersack, Nucl. Instrum. Methods Phys. Res. Sect. B 268, 1818 (2010).CrossRefGoogle Scholar
  23. 23.
    R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath, and F.A. Garner, Nucl. Instrum. Methods Phys. Res. Sect. B 310, 75 (2013).CrossRefGoogle Scholar
  24. 24.
    W.J. Weber and Y. Zhang, Curr. Opin. Solid State Mater. Sci. 0, 100757 (2019).CrossRefGoogle Scholar
  25. 25.
    D.J. Edwards, E.P. Simonen, and S.M. Bruemmer, J. Nucl. Mater. 317, 13 (2003).CrossRefGoogle Scholar
  26. 26.
    B.H. Sencer, G.S. Was, M. Sagisaka, Y. Isobe, G.M. Bond, and F.A. Garner, J. Nucl. Mater. 323, 18 (2003).CrossRefGoogle Scholar
  27. 27.
    P. Hosemann, D. Kiener, Y. Wang, and S.A. Maloy, J. Nucl. Mater. 425, 136 (2012).CrossRefGoogle Scholar
  28. 28.
    J.G. Gigax, E. Aydogan, T. Chen, D. Chen, L. Shao, Y. Wu, W.Y. Lo, Y. Yang, and F.A. Garner, J. Nucl. Mater. 465, 343 (2015).CrossRefGoogle Scholar
  29. 29.
    T. Yang, S. Xia, W. Guo, R. Hu, J.D. Poplawsky, G. Sha, Y. Fang, Z. Yan, C. Wang, C. Li, Y. Zhang, S.J. Zinkle, and Y. Wang, Scr. Mater. 144, 31 (2018).CrossRefGoogle Scholar
  30. 30.
    D. Chen, Y. Tong, J. Wang, B. Han, Y.L. Zhao, F. He, and J.J. Kai, J. Nucl. Mater. 510, 187 (2018).CrossRefGoogle Scholar
  31. 31.
    D.L. Douglass, G. Thomas, and W.R. Roser, Corrosion 20, 15t (1964).CrossRefGoogle Scholar
  32. 32.
    A. Das, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 47, 748 (2016).CrossRefGoogle Scholar
  33. 33.
    B. Wu, W. Chen, Z. Jiang, Z. Chen, and Z. Fu, Mater. Sci. Eng. A 676, 492 (2016).CrossRefGoogle Scholar
  34. 34.
    P. Yu, Y. Zhuang, J.-P. Chou, J. Wei, Y.-C. Lo, and A. Hu, Sci. Rep. 9, 10940 (2019).CrossRefGoogle Scholar
  35. 35.
    T. Toyama, Y. Nozawa, W. Van Renterghem, Y. Matsukawa, M. Hatakeyama, Y. Nagai, A. Al Mazouzi, and S. Van Dyck, J. Nucl. Mater. 425, 71 (2012).CrossRefGoogle Scholar
  36. 36.
    M. Nastar and F. Soisson, Radiation-induced segregation (Amsterdam: Elsevier, 2012).CrossRefGoogle Scholar
  37. 37.
    Y. Ma, B. Jiang, C. Li, Q. Wang, C. Dong, P.K. Liaw, F. Xu, and L. Sun, Metals (Basel). 7, 57 (2017).CrossRefGoogle Scholar
  38. 38.
    Y.Y. Zhao, H.W. Chen, Z.P. Lu, and T.G. Nieh, Acta Mater. 147, 184 (2018).CrossRefGoogle Scholar
  39. 39.
    D. Chen, F. He, B. Han, Q. Wu, Y. Tong, Y. Zhao, Z. Wang, J. Wang, and J. Jung Kai, Intermetallics 110, 106476 (2019).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Mining and Nuclear EngineeringMissouri University of Science and TechnologyRollaUSA
  2. 2.Department of Engineering PhysicsUniversity of WisconsinMadisonUSA
  3. 3.Department of Materials Science and EngineeringMissouri University of Science and TechnologyRollaUSA
  4. 4.State Key Laboratory for Advanced Metals and MaterialsUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations