pp 1–9 | Cite as

On the Room-Temperature Mechanical Properties of an Ion-Irradiated TiZrNbHfTa Refractory High Entropy Alloy

  • Michael Moschetti
  • Alan Xu
  • Benjamin Schuh
  • Anton Hohenwarter
  • Jean-Philippe Couzinié
  • Jamie J. Kruzic
  • Dhriti Bhattacharyya
  • Bernd GludovatzEmail author
Advanced Characterization and Testing of Irradiated Materials


Refractory high-entropy alloys (RHEAs) are potential candidate materials for use in next-generation nuclear reactors due to their excellent mechanical performance at high temperatures. Here, we investigate the microstructure and mechanical properties of the nanocrystalline RHEA TiZrNbHfTa before and after irradiation with He2+ ions to determine radiation-induced property changes. Using nanoindentation and in situ microtensile testing we find only small changes in hardness after irradiation but a significant increase in yield and ultimate tensile strength without loss in ductility. This is associated with radiation hardening and a shift from shear localization failure with smooth fracture surfaces to a fracture morphology consisting of fine dimples and intergranular failure characteristics. Overall, the material shows excellent damage-tolerant properties with good combinations of strength and ductility both prior to and after ion irradiation.



The authors acknowledge the support of the Australian Nuclear Science & Technology Organisation (ANSTO) in providing expertise and facilities critical to this work—with special thanks to Colin Hobman for fabrication of testing equipment, Joel Davis for his support in preparing TEM specimens in the FIB, Ken Short for his help with nanoindentation, Tao Wei for performing the ion irradiation experiments, and the Centre for Accelerator Science for use of the 2 MV STAR tandem accelerator. In addition, the authors thank Microscopy Australia at the Electron Microscope Unit within the Mark Wainwright Analytical Centre at UNSW Sydney for technical assistance and use of their facilities. Additionally, M.M. would like to express gratitude for the financial support provided by the Australian Government [Award: Research Training Program (RTP) Scholarship] and by the Australian Institute of Nuclear Science and Engineering (AINSE) Limited [Award: Residential Student Scholarship (RSS)] who made this research possible.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    K.L. Murty and I. Charit, J. Nucl. Mater. 383, 189 (2008).CrossRefGoogle Scholar
  2. 2.
    S.J. Zinkle and J.T. Busby, Mater. Today 12, 12 (2009).CrossRefGoogle Scholar
  3. 3.
    L.K. Mansur, A.F. Rowcliffe, R.K. Nanstad, S.J. Zinkle, W.R. Corwin, and R.E. Stoller, J. Nucl. Mater. 329–333, 166 (2004).CrossRefGoogle Scholar
  4. 4.
    Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Prog. Mater. Sci. 61, 1 (2014).CrossRefGoogle Scholar
  5. 5.
    E.P. George, D. Raabe, and R.O. Ritchie, Nat. Rev. Mater. (2019).Google Scholar
  6. 6.
    D.B. Miracle and O.N. Senkov, Acta Mater. 122, 448 (2017).CrossRefGoogle Scholar
  7. 7.
    F. Granberg, K. Nordlund, M.W. Ullah, K. Jin, C. Lu, H. Bei, L.M. Wang, F. Djurabekova, W.J. Weber, and Y. Zhang, Phys. Rev. Lett. 116, 135504 (2016).CrossRefGoogle Scholar
  8. 8.
    B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, Science 345, 1153 (2014).CrossRefGoogle Scholar
  9. 9.
    K.V.S. Thurston, B. Gludovatz, A. Hohenwarter, G. Laplanche, E.P. George, and R.O. Ritchie, Intermetallics 88, 65 (2017).CrossRefGoogle Scholar
  10. 10.
    K.V.S. Thurston, B. Gludovatz, Q. Yu, G. Laplanche, E.P. George, and R.O. Ritchie, J. Alloys Compd. 794, 525 (2019).CrossRefGoogle Scholar
  11. 11.
    O.N. Senkov, D.B. Miracle, K.J. Chaput, and J.-P. Couzinie, J. Mater. Res. 33, 3092 (2018).CrossRefGoogle Scholar
  12. 12.
    O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, and C.F. Woodward, J. Alloys Compd. 509, 6043 (2011).CrossRefGoogle Scholar
  13. 13.
    J.P. Couzinié, G. Dirras, L. Perrière, T. Chauveau, E. Leroy, Y. Champion, and I. Guillot, Mater. Lett. 126, 285 (2014).CrossRefGoogle Scholar
  14. 14.
    B. Schuh, B. Völker, J. Todt, N. Schell, L. Perrière, J. Li, J.P. Couzinié, and A. Hohenwarter, Acta Mater. 142, 201 (2018).CrossRefGoogle Scholar
  15. 15.
    O.N. Senkov and S.L. Semiatin, J. Alloys Compd. 649, 1110 (2015).CrossRefGoogle Scholar
  16. 16.
    Y. Lu, H. Huang, X. Gao, C. Ren, J. Gao, H. Zhang, S. Zheng, Q. Jin, Y. Zhao, C. Lu, T. Wang, and T. Li, J. Mater. Sci. Technol. 35, 369 (2019).CrossRefGoogle Scholar
  17. 17.
    O. El-Atwani, N. Li, M. Li, A. Devaraj, J.K.S. Baldwin, M.M. Schneider, D. Sobieraj, J.S. Wróbel, D. Nguyen-Manh, S.A. Maloy, and E. Martinez, Sci. Adv. 5, eaav2002 (2019).CrossRefGoogle Scholar
  18. 18.
    J.F. Ziegler, M.D. Ziegler, and J.P. Biersack, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 268, 1818 (2010).CrossRefGoogle Scholar
  19. 19.
    A.Yu. Konobeyev, U. Fischer, Yu.A. Korovin, and S.P. Simakov, Nucl. Energy Technol. 3, 169 (2017).CrossRefGoogle Scholar
  20. 20.
    R. Abbaschian, L. Abbaschian, and R.E. Reed-Hill, Physical Metallurgy Principles, 4th ed. (Stamford, CT: Cengage Learning, 2009).Google Scholar
  21. 21.
    G. Laplanche, P. Gadaud, L. Perrière, I. Guillot, and J.P. Couzinié, J. Alloys Compd. 799, 538 (2019).CrossRefGoogle Scholar
  22. 22.
    J. Čížek, P. Haušild, M. Cieslar, O. Melikhova, T. Vlasák, M. Janeček, R. Král, P. Harcuba, F. Lukáč, J. Zýka, J. Málek, J. Moon, and H.S. Kim, J. Alloys Compd. 768, 924 (2018).CrossRefGoogle Scholar
  23. 23.
    N.D. Stepanov, N.Yu. Yurchenko, S.V. Zherebtsov, M.A. Tikhonovsky, and G.A. Salishchev, Mater. Lett. 211, 87 (2018).CrossRefGoogle Scholar
  24. 24.
    S.Y. Chen, Y. Tong, K.-K. Tseng, J.-W. Yeh, J.D. Poplawsky, J.G. Wen, M.C. Gao, G. Kim, W. Chen, Y. Ren, R. Feng, W.D. Li, and P.K. Liaw, Scr. Mater. 158, 50 (2019).CrossRefGoogle Scholar
  25. 25.
    J. Zýka, J. Málek, Z. Pala, I. Andršová, and J. Veselý, in 24th International Conference on Metallurgy and Materials (2015).Google Scholar
  26. 26.
    T. Wei, H. Zhu, M. Ionescu, P. Dayal, J. Davis, D. Carr, R. Harrison, and L. Edwards, J. Nucl. Mater. 459, 284 (2015).CrossRefGoogle Scholar
  27. 27.
    D. Bhattacharyya, M.J. Demkowicz, Y.-Q. Wang, R.E. Baumer, M. Nastasi, and A. Misra, Microsc. Microanal. 18, 152 (2012).CrossRefGoogle Scholar
  28. 28.
    W.D. Nix and H. Gao, J. Mech. Phys. Solids 46, 411 (1998).CrossRefGoogle Scholar
  29. 29.
    M. Saleh, Z. Zaidi, M. Ionescu, C. Hurt, K. Short, J. Daniels, P. Munroe, L. Edwards, and D. Bhattacharyya, Int. J. Plast. 86, 151 (2016).CrossRefGoogle Scholar
  30. 30.
    P.L. Lane and P.J. Goodhew, Philos. Mag. A 48, 965 (1983).CrossRefGoogle Scholar
  31. 31.
    P. Dayal, D. Bhattacharyya, W.M. Mook, E.G. Fu, Y.-Q. Wang, D.G. Carr, O. Anderoglu, N.A. Mara, A. Misra, R.P. Harrison, and L. Edwards, J. Nucl. Mater. 438, 108 (2013).CrossRefGoogle Scholar
  32. 32.
    J.D. Hunn, E.H. Lee, T.S. Byun, and L.K. Mansur, J. Nucl. Mater. 282, 131 (2000).CrossRefGoogle Scholar
  33. 33.
    T. Wei, A. Xu, H. Zhu, M. Ionescu, and D. Bhattacharyya, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 409, 288 (2017).CrossRefGoogle Scholar
  34. 34.
    H. Zhang, C. Zhang, Y. Yang, Y. Meng, J. Jang, and A. Kimura, J. Nucl. Mater. 455, 349 (2014).CrossRefGoogle Scholar
  35. 35.
    M.A. Pouchon, J.C. Chen, and W. Hoffelner, Adv. Mater. Res. 59, 269 (2008).CrossRefGoogle Scholar
  36. 36.
    G. Sharma, P. Mukherjee, A. Chatterjee, N. Gayathri, A. Sarkar, and J.K. Chakravartty, Acta Mater. 61, 3257 (2013).CrossRefGoogle Scholar
  37. 37.
    M.A. Meyers, A. Mishra, and D.J. Benson, JOM 58, 41 (2006).CrossRefGoogle Scholar
  38. 38.
    P. Kumar, M. Kawasaki, and T.G. Langdon, J. Mater. Sci. 51, 7 (2016).CrossRefGoogle Scholar
  39. 39.
    R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe, J. Mater. Res. 17, 5 (2002).CrossRefGoogle Scholar
  40. 40.
    R. Valiev, Nat. Mater. 3, 511 (2004).CrossRefGoogle Scholar
  41. 41.
    T. Mungole, P. Kumar, M. Kawasaki, and T.G. Langdon, J. Mater. Sci. 50, 3549 (2015).CrossRefGoogle Scholar
  42. 42.
    T. Mungole, P. Kumar, M. Kawasaki, and T.G. Langdon, J. Mater. Res. 29, 2534 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Mechanical and Manufacturing EngineeringUNSW SydneySydneyAustralia
  2. 2.School of Materials Science and EngineeringUNSW SydneySydneyAustralia
  3. 3.Australian Nuclear Science and Technology Organisation (ANSTO)Lucas HeightsAustralia
  4. 4.Erich-Schmid-Institute of Materials ScienceAustrian Academy of SciencesLeobenAustria
  5. 5.Department of Materials Science, Chair of Materials PhysicsMontanuniversität LeobenLeobenAustria
  6. 6.Université Paris Est, ICMPE (UMR 7182), CNRS, UPECThiaisFrance

Personalised recommendations