Advertisement

JOM

pp 1–6 | Cite as

High-Temperature Nanoindentation of SiC/SiC Composites

  • D. FrazerEmail author
  • C. P. Deck
  • P. Hosemann
Advanced Characterization and Testing of Irradiated Materials
  • 62 Downloads

Abstract

The results of high-temperature nanoindentation testing on both a control and a neutron-irradiated silicon carbide matrix silicon carbide fiber composite sample are presented. The mechanical properties of the chemical vapor-infiltrated matrix were observed to have slightly increased in hardness and slightly decreased in elastic modulus after irradiation. Tyranno SA3 fiber behavior results are inconclusive, possibly because residual graphite in the fibers resulting from the manufacturing process produced a large scatter in the data. This work also demonstrates the capability to measure the individual components of fabricated composites at elevated temperature, which should provide inputs for modeling the macro-scale behavior of the composites.

Notes

Acknowledgements

The authors would like to thank the Nuclear Science User Facilities (NSUF) rapid turnaround experiment (RTE) Award Number 752 for funding this research. In addition, the authors would like to thank the NEUP Program DE-NE0008768 for supporting this work. The irradiation of the SiC/SiC composite material used for this work was funded by General Atomics internal research and development support. The authors would like to thank Yutai Katoh of Oak Ridge National Laboratory for providing macro-scale swelling data for the irradiated SiC/SiC material studied in this work. The authors would also like to thank Mr. Richard Frazer for a thorough read through of the manuscript.

References

  1. 1.
    H. Ohnabe, S. Masaki, M. Onozuka, K. Miyahara, and T. Sasa, Comp. Part A. 30, 489 (1999).CrossRefGoogle Scholar
  2. 2.
    R. Naslain, Compos. Sci. Technol. 64, 155 (2004).CrossRefGoogle Scholar
  3. 3.
    Y. Katoh, K. Ozawa, C. Shih, T. Nozawa, R.J. Shinavski, A. Hasegawa, and L.L. Snead, J. Nucl. Mater. 448, 448 (2014).CrossRefGoogle Scholar
  4. 4.
    A. Kohyama, M. Seki, K. Abe, T. Muroga, H. Matsui, S. Jitsukawa, and S. Matsuda, J. Nucl. Mater. 283–297, 20 (2000).CrossRefGoogle Scholar
  5. 5.
    Y. Katoh, L.L. Snead, C.H. Henager jr, T. Nozawa, T. Hinoki, A. Ivekovic, S. Novak, and S.M. Gonzalez de Vicente, J. Nucl. Mater. 455, 387 (2014).Google Scholar
  6. 6.
    C.P. Deck, G.M. Jacobsen, J. Sheeder, O. Gutierrez, J. Zhang, J. Stone, H.E. Khalifa, and C.A. Back, J. Nucl. Mater. 466, 667 (2015).CrossRefGoogle Scholar
  7. 7.
    A. Hasegawa, A. Kohyama, R.H. Jones, L.L. Snead, B. Riccardi, and P. Fenici, J. Nucl. Mater. 283–287, 128 (2000).CrossRefGoogle Scholar
  8. 8.
    G.M. Jacobsen, J.D. Stone, H.E. Khalifa, C.P. Deck, and C.A. Back, J. Nucl. Mater. 452, 125 (2014).CrossRefGoogle Scholar
  9. 9.
    T. Hinoki, E. Lara-curzio, and L. Snead, Fusion Sci. Technol. 44, 211 (2003).CrossRefGoogle Scholar
  10. 10.
    J. Degrieck and W.V. Paepegem, Appl. Mech. Rev. 54, 279 (2001).CrossRefGoogle Scholar
  11. 11.
    J.M. Wheeler, D.E.J. Armstrong, W. Heinz, and R. Schwaiger, Curr. Opin. Solid State Mater. Sci. 19, 354 (2015).CrossRefGoogle Scholar
  12. 12.
    H. Nili, K. Kalantar-zadeh, M. Bhaskaran, and S. Sriram, Prog. Mater. Sci. 58, 1 (2013).CrossRefGoogle Scholar
  13. 13.
    P. Hosemann, Scr. Mater. 143, 161 (2018).CrossRefGoogle Scholar
  14. 14.
    T. Noda, M. Fujita, H. Araki, and A. Kohyama, Fusion Eng. Des. 99, 51 (2000).Google Scholar
  15. 15.
    T. Ishikawa, Adv. Polym. Sci. (2005).Google Scholar
  16. 16.
    W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
  17. 17.
    D. Frazer, M.D. Abad, D. Krumwiede, C.A. Back, H.E. Khalifa, C.P. Deck, and P. Hosemann, Compos. Part A 70, 93 (2015).CrossRefGoogle Scholar
  18. 18.
    N. Rohbeck, D. Tsivoulas, I.P. Shaprio, P. Xiao, S. Knol, J.M. Escleine, and M. Perez, J. Nucl. Mater. 465, 692 (2015).CrossRefGoogle Scholar
  19. 19.
    P. Hosemann, J.N. Martos, D. Frazer, G. Vasudevamurthy, T.S. Byun, J.D. Hunn, B.C. Jolly, K. Terrani, and M. Okunieski, J. Nucl. Mater. 442, 133 (2013).CrossRefGoogle Scholar
  20. 20.
    H. Zhang, E. Lopex-Honorato, A. Javed, X. Zhao, J. Tan, and P. Xiao, J. Eur. Ceram. Soc. 32, 1775 (2012).CrossRefGoogle Scholar
  21. 21.
    L.L. Snead, T. Nozawa, Y. Katoh, T.-S. Byun, S. Kondo, and D.A. Petti, J. Nucl. Mater. 371, 329 (2007).CrossRefGoogle Scholar
  22. 22.
    N. Rohbeck, D. Tsivoulas, I.P. Shapiro, P. Xiao, and S. Knol, J. Mater. Sci. 52, 1868 (2017).CrossRefGoogle Scholar
  23. 23.
    D. Frazer, J. Szornel, D.L. Kurmwiede, K.A. Terrani, and P. Hosemann, Exp. Mech. 57, 1081 (2017).CrossRefGoogle Scholar
  24. 24.
    L.W. Yang, H.T. Liu, and H.F. Cheng, Compos. Part B.Google Scholar
  25. 25.
    J. Kabel, M. Balooch, D. Frazer, C. Deck, T. Koyanagi, K. Terrani, and P. Hosemann, International Congress on Advances in Nuclear Power Plants, ICAPP 2 (2016), pp. 911.Google Scholar
  26. 26.
    M.C. Osborne, J.C. Hay, L.L Snead, and D. Steiner, J. Am. Ceram. Soc. 82, (1999).Google Scholar
  27. 27.
    S. Nogami, A. Hasegawa, and L.L. Snead, J. Nucl. Mater. 307–311, 1163 (2002).CrossRefGoogle Scholar
  28. 28.
    T. Nozawa, T. Hinoki, L.L. Snead, Y. Katoh, and A. Kohyama, J. Nucl. Mater. 329–333, 544 (2004).CrossRefGoogle Scholar
  29. 29.
    Y.V. Milman, S.I. Chugunova, I.V. Goncharova, I. Chudoba, W. Lojkowski, and W. Gooch, Int. J. Refract. Met. Hard Mater. 17, 361 (1999).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Nuclear Engineering DepartmentUniversity of CaliforniaBerkeleyUSA
  2. 2.Materials Science and Technology DivisionLos Alamos National LaboratoryLos AlamosUSA
  3. 3.General AtomicsSan DiegoUSA

Personalised recommendations