Advertisement

JOM

, Volume 71, Issue 12, pp 4737–4745 | Cite as

Evolution of the Initial Precipitation and Strengthening Mechanism of Al-Mg-Si alloys

  • Yaya Zheng
  • Binghui LuoEmail author
  • Zhenhai Bai
  • Chuan He
Microstructure Evolution During Deformation Processing
  • 90 Downloads

Abstract

The evolution of the initial precipitation and strengthening mechanism of Al-Mg-Si alloys during non-isothermal aging were investigated. The results indicated that, during heating, two corresponding strength peaks appear, which were attributed to the precipitation of clusters and β″ precipitates. The strong coherency strain field attributed to β″ conferred maximum strengthening effects on Al-Mg-Si alloys. Three variants of clusters were identified, and the sequence of evolution was as follows: the spherical morphology of cluster 1 evolved into an elongated morphology, first located on the tight surface {111}Al plane and growing along the \( \left\langle {111} \right\rangle \)Al direction (cluster 2). When cluster 2 exceeded a certain size, it oriented itself on the {100}Al plane and along the \( \left\langle {100} \right\rangle \)Al direction as cluster 3, which was then transformed into the β″ phase. The strengthening contributions of the various initial precipitates of the alloy were ultimately evaluated.

Notes

Acknowledgements

This study is supported by the National Defense Foundation of China (Grant No. 2011-006).

Supplementary material

11837_2019_3856_MOESM1_ESM.pdf (333 kb)
Supplementary material 1 (PDF 333 kb)

References

  1. 1.
    C.D. Marioara, S.J. Andersen, H.W. Zandbergen, and R. Holmestad, Metall. Mater. Trans. A 36, 691 (2005).Google Scholar
  2. 2.
    G.A. Edwards, K. Stiller, G.L. Dunlop, and M.J. Couper, Acta Mater. 46, 3893 (1998).CrossRefGoogle Scholar
  3. 3.
    J. Buha, R.N. Lumley, A.G. Crosky, and K. Hono, Acta Mater. 55, 3015 (2007).CrossRefGoogle Scholar
  4. 4.
    M. Murayama and K. Hono, Acta Mater. 47, 1537 (1999).CrossRefGoogle Scholar
  5. 5.
    L.P. Ding, Z.H. Jia, J.F. Nie, Y.Y. Weng, L.F. Cao, H.W. Chen, X.Z. Wu, and Q. Liu, Acta Mater. 145, 437 (2018).CrossRefGoogle Scholar
  6. 6.
    R. Vissers, M.A. van Huis, J. Jansen, H.W. Zandbergen, C.D. Marioara, and S.J. Andersen, Acta Mater. 55, 3815 (2007).CrossRefGoogle Scholar
  7. 7.
    M.W. Zandbergen, Q. Xu, A. Cerezo, and G.D.W. Smith, Acta Mater. 101, 136 (2015).CrossRefGoogle Scholar
  8. 8.
    C. Flament, J. Ribis, J. Garnier, Y. Serruys, F. Leprêtre, A. Gentils, C. Baumier, M. Descoins, D. Mangelinck, A. Lopez, K. Colas, K. Buchanan, and P. Donnadieu, Acta Mater. 128, 64 (2017).CrossRefGoogle Scholar
  9. 9.
    W.C. Yang, M.P. Wang, R.R. Zhang, Q. Zhang, and X.F. Sheng, Scr. Mater. 62, 705 (2010).CrossRefGoogle Scholar
  10. 10.
    M.W. Zandbergen, A. Cerezo, and G.D.W. Smith, Acta Mater. 101, 149 (2015).CrossRefGoogle Scholar
  11. 11.
    S.X. Jin, T.W. Ngai, G.W. Zhang, T.G. Zhai, S. Jia, and L.J. Li, Mater. Sci. Eng. A 724, 53 (2018).CrossRefGoogle Scholar
  12. 12.
    K. Matsuda, Y. Sakaguchi, Y. Miyata, Y. Uetani, T. Sato, and A. Kamio, J. Mater. Sci. 35, 170 (2000).CrossRefGoogle Scholar
  13. 13.
    J.H. Chen, E. Costan, M.A. Van-huis, Q. Xu, and H.W. Zandbergen, Science 312, 416 (2006).CrossRefGoogle Scholar
  14. 14.
    K. Buchanan, K. Colas, J. Ribis, A. Lopez, and J. Garnier, Acta Mater. 132, 209 (2017).CrossRefGoogle Scholar
  15. 15.
    M. Murayama, K. Hono, M. Saga, and M. Kikuchi, Mater. Sci. Eng. A 250, 127 (1998).CrossRefGoogle Scholar
  16. 16.
    I. Dutta and S.N. Allen, J. Mater. Sci. Lett. 10, 323 (1991).CrossRefGoogle Scholar
  17. 17.
    J. Buha, R.N. Lumley, A.G. Crosky, and K. Hono, Acta Mater. 55, 3015 (2007).CrossRefGoogle Scholar
  18. 18.
    F. Vahid, L. Brian, O.O. Nana, R. Babak, P. Nikolas, and E. Shahrzad, Acta Mater. 103, 290 (2016).CrossRefGoogle Scholar
  19. 19.
    M.A. van Huis, J.H. Chen, M.H.F. Sluiter, and H.W. Zandbergen, Acta Mater. 55, 2183 (2007).CrossRefGoogle Scholar
  20. 20.
    A. Yasuhiro, K. Masaya, T. Yasuo, and S. Tatsuo, Mater. Sci. Eng. A 631, 86 (2015).CrossRefGoogle Scholar
  21. 21.
    M.W. Zandbergen, Q. Xu, A. Cerezo, and G.D.W. Smith, Acta Mater. 101, 136 (2015).CrossRefGoogle Scholar
  22. 22.
    M.X. Guo, Y. Zhang, X.K. Zhang, J.S. Zhang, and L.Z. Zhuang, Mater. Sci. Eng. A 669, 20 (2016).CrossRefGoogle Scholar
  23. 23.
    L.P. Ding, Z.H. Jia, Z.Q. Zhang, E. Robert, Q.Liu Sanders, and G. Yang, Mater. Sci. Eng. A 627, 119 (2015).CrossRefGoogle Scholar
  24. 24.
    Y.Y. Zheng, B. Luo, Z. Bai, J. Wang, and Y. Yin, Metals. 7, 387 (2017).CrossRefGoogle Scholar
  25. 25.
    C. Wolverton, Acta Mater. 55, 5867 (2007).CrossRefGoogle Scholar
  26. 26.
    M. Liu, B. Klobes, and J. Banhart, J. Mater. Sci. 51, 7754 (2016).CrossRefGoogle Scholar
  27. 27.
    I. Kovaćs, J. Lendvai, and E. Nagy, Acta Metall. 20, 975 (1972).CrossRefGoogle Scholar
  28. 28.
    S. Zhu, Z.H. Li, L.Z. Yan, X.W. Li, S.H. Huang, H.W. Yan, Y.G. Zhang, and B.Q. Xiong, Mater. Charact. 145, 258 (2018).CrossRefGoogle Scholar
  29. 29.
    Y.J. Li and L. Arnberg, Acta Metall. 51, 3415 (2003).Google Scholar
  30. 30.
    O.R. Myhr, Ø. Grong, and S.J. Andersen, Acta Metall. 49, 65 (2001).Google Scholar
  31. 31.
    O. Englera, C.D. Marioarab, Y. Arugac, M. Kozukac, and O.R. Myhrd, Mater. Sci. Eng. A 759, 250 (2009).Google Scholar
  32. 32.
    S. Esmaeili, D.J. Lloyd, and W.J. Poole, Acta Metall. 51, 3467 (2003).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Yaya Zheng
    • 1
  • Binghui Luo
    • 1
    Email author
  • Zhenhai Bai
    • 1
  • Chuan He
    • 1
  1. 1.College of Materials Science and EngineeringCentral South UniversityChangshaChina

Personalised recommendations