, Volume 71, Issue 12, pp 4778–4788 | Cite as

Influence of Thermal Deformation Parameters on Mechanical Properties and Microstructure Evolution of AA7075 Aluminum Alloy during Hot Stamping-Quenching Process

  • Huanhuan Li
  • Zhili Hu
  • Lin HuaEmail author
  • Qian Sun
Microstructure Evolution During Deformation Processing


Hot tensile tests have been performed on AA7075 aluminum alloy to investigate the effects of temperature and strain rate on its deformation behavior during the hot stamping-quenching process. The corresponding mechanical properties and associated microstructures have also been studied. The results indicate that the flow behavior curves exhibit work hardening, a dynamic equilibrium, then a dramatic decrease, ultimately leading to fracture. Ductility of over 30% can be obtained at relatively low deformation temperature and strain rate. The fracture mechanism changes from ductile transgranular fracture to ductile intergranular fracture owing to the weakening of the grain-boundary strength at high temperatures. The strength of the tested samples after artificial aging treatment increases with the deformation temperature after solid-solution heat treatment. It is more appropriate to choose a temperature of 400°C and a strain rate of 0.1–1 s−1 for AA7075 aluminum alloy parts to simultaneously obtain the desired ductility and final strength in this process.



This work is financially supported by the National Natural Science Foundation of China (U1564202), the National Natural Science Foundation of China (Grant No. 51405358 and 51775397), the 111 Project (B17034), the Outstanding Young and Middle-aged Science and Technology Innovation Team Plan of Hubei Provincial Department of Education (No. T201629), and the Innovative Research Team Development Program of Ministry of Education of China (IRT13087), who the authors gratefully thank with sincere appreciation.


  1. 1.
    L. Wang, M. Strangwood, D. Balint, J. Lin, and T.A. Dean, Mater. Sci. Eng. A 528, 2648 (2011).CrossRefGoogle Scholar
  2. 2.
    M.S. Mohamed, A.D. Foster, J. Lin, D.S. Balint, and T.A. Dean, Int. J. Mach. Tool Manuf. 53, 27 (2012).CrossRefGoogle Scholar
  3. 3.
    J. Lin and T.A. Dean, J. Mater. Process Technol. 167, 354 (2005).CrossRefGoogle Scholar
  4. 4.
    O. El Fakir, L. Wang, D. Balint, J.P. Dear, J. Lin, and T.A. Dean, Int. J. Mach. Tool Manuf. 87, 39 (2014).CrossRefGoogle Scholar
  5. 5.
    W. Ma, B. Wang, L. Yang, X. Tang, W. Xiao, and J. Zhou, Mater. Des. 88, 1119 (2015).CrossRefGoogle Scholar
  6. 6.
    X. Fan, Z. He, S. Yuan, and K. Zheng, Mater. Sci. Eng. A 573, 154 (2013).CrossRefGoogle Scholar
  7. 7.
    K. Strobel, M.D.H. Lay, M.A. Easton, L. Sweet, S. Zhu, N.C. Parson, and A.J. Hill, Mater. Charact. 111, 43 (2016).CrossRefGoogle Scholar
  8. 8.
    W. Ma, B. Wang, L. Fu, J. Zhou, M. Huang, and J. Cent, South Univ. 22, 1167 (2015).CrossRefGoogle Scholar
  9. 9.
    W. Xiao, B. Wang, J. Zhou, W. Ma, and L. Yang, Eng. Optim. 48, 2173 (2016).CrossRefGoogle Scholar
  10. 10.
    J. Zhou, B. Wang, J. Lin, and L. Fu, Arch. Civ. Mech. Eng. 13, 401 (2013).CrossRefGoogle Scholar
  11. 11.
    N.R. Harrison, S.G. Luckey, and S.A.E. Int, J. Mater. Manuf. 7, 567 (2014).Google Scholar
  12. 12.
    K. Shojaei, S.V. Sajadifar, and G.G. Yapici, Mater. Sci. Eng. A 670, 81 (2016).CrossRefGoogle Scholar
  13. 13.
    B. Yang, Z. Zheng, L.X. Wang, and Y.G. Wu, Adv. Mater. Res. 1088, 186 (2015).CrossRefGoogle Scholar
  14. 14.
    A.A. Khamei and K. Dehghani, Mater. Sci. Eng. A 627, 1 (2015).CrossRefGoogle Scholar
  15. 15.
    Y.C. Lin, Y. Jiang, H. Zhou, and G. Liu, J. Mater. Eng. Perform. 23, 4350 (2014).CrossRefGoogle Scholar
  16. 16.
    R. Jafari Nedoushan, M. Farzin, M. Mashayekhi, and D. Banabic, Metall. Trans. 43, 4266 (2012).Google Scholar
  17. 17.
    J. Cai, Modelling of phase transformation in hot stamping of boron steel (London: Imperial College London, 2011).Google Scholar
  18. 18.
    H. Zhao, Y. Quan, Z. Zhang, and L. Lin, J. Funct. Mater. 596, 176 (2014).Google Scholar
  19. 19.
    Y. Deng, Z. Yin, and J. Huang, Mater. Sci. Eng. A 528, 1780 (2011).CrossRefGoogle Scholar
  20. 20.
    J. Yan, Q.L. Pan, B. Li, Z.Q. Huang, Z.M. Liu, and Z.M. Yin, J. Alloys Compd. 632, 549 (2015).CrossRefGoogle Scholar
  21. 21.
    B. Wu and M.Q. Ma, Mater. Sci. Eng. A 542, 79 (2012).CrossRefGoogle Scholar
  22. 22.
    M. Zhou, Y.C. Lin, J. Deng, and Y. Jiang, Mater. Des. 59, 141 (2014).CrossRefGoogle Scholar
  23. 23.
    W.Y. Liu, Research on mechanical property and microstructure evolution in hot working of 7085 aluminum alloy (Chongqing: Chongqing University, 2014).Google Scholar
  24. 24.
    X. Fan, Z. He, W. Zhou, and S. Yuan, J. Mater. Process Technol. 228, 179 (2016).CrossRefGoogle Scholar
  25. 25.
    C.M. Sellars and W.J. McTegart, Acta Mater. 14, 1136 (1966).CrossRefGoogle Scholar
  26. 26.
    X. Fan, Forming behavior and strengthening mechanism for integrated process of hot deformation-quenching of 2195 Al-Li alloy sheet (Harbin: Harbin Institute of Technology, 2016).Google Scholar
  27. 27.
    X. Zou, H. Yan, and X. Chen, Trans. Nonferrous Met. Soc. China 27, 2146 (2017).CrossRefGoogle Scholar
  28. 28.
    K. Zheng, Y. Dong, D. Zheng, J. Lin, and T.A. Dean, J. Mater. Process Technol. 268, 87 (2019).CrossRefGoogle Scholar
  29. 29.
    W.J. Poole, J.A. Sæter, S. Skjervold, and G. Waterloo, Metall. Mater. Trans. A 31, 2327 (2000).CrossRefGoogle Scholar
  30. 30.
    J. Lin, J. Mater. Process. Technol. 143–144, 281 (2003).CrossRefGoogle Scholar
  31. 31.
    W. Huo, L. Hou, Y. Lang, H. Cui, L. Zhuang, and J. Zhang, Mater. Sci. Eng. A 626, 86 (2015).CrossRefGoogle Scholar
  32. 32.
    T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, and B. Baroux, Acta Mater. 58, 248 (2010).CrossRefGoogle Scholar
  33. 33.
    T. Aoba, M. Kobayashi, and H. Miura, Mater. Sci. Eng. A 700, 220 (2017).CrossRefGoogle Scholar
  34. 34.
    K.C. Russell, Adv. Colloid Interfaces. 13, 205 (1980).CrossRefGoogle Scholar
  35. 35.
    R.W. Cahn, P. Haasen, E.J. Kramer, and W. Schröter, Materials Science and Technology (Weinheim: Wiley, 1991).Google Scholar
  36. 36.
    R. Chen, Q. Xu, and B. Liu, Acta Mater. Sin. 52, 987 (2016).Google Scholar
  37. 37.
    A.P. David, E.E. Kenneth, and Y.S. Mohamed, Phase transformations in metals alloy, 3rd ed. (London: CRC Press, 2014).Google Scholar
  38. 38.
    A. Ning, Z. Liu, B. Peng, and S. Zeng, Trans. Nonferrous Met. Soc. China 17, 1005 (2007).CrossRefGoogle Scholar
  39. 39.
    I. Brooks, P. Lin, G. Palumbo, G.D. Hibbard, and U. Erb, Mater. Sci. Eng. A 491, 412 (2008).CrossRefGoogle Scholar
  40. 40.
    L.P. Huang, K.H. Chen, S. Li, and M. Song, Scr. Mater. 56, 305 (2007).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Huanhuan Li
    • 1
    • 2
    • 3
  • Zhili Hu
    • 2
    • 3
  • Lin Hua
    • 1
    • 2
    • 3
    Email author
  • Qian Sun
    • 2
    • 3
  1. 1.School of Materials Science and EngineeringWuhan University of TechnologyWuhanPeople’s Republic of China
  2. 2.Hubei Key Laboratory of Advanced Technology of Automobile PartsWuhan University of TechnologyWuhanPeople’s Republic of China
  3. 3.Hubei Collaborative Innovation Center for Automotive Components TechnologyWuhan University of TechnologyWuhanPeople’s Republic of China

Personalised recommendations