Advertisement

JOM

, Volume 71, Issue 12, pp 4769–4777 | Cite as

Microstructure Evolution During Roll Bonding and Growth of Interfacial Intermetallic Compounds in Al/Ti/Al Laminated Metal Composites

  • Taiqian Mo
  • Jie Chen
  • Zejun ChenEmail author
  • Weijun HeEmail author
  • Qing Liu
Microstructure Evolution During Deformation Processing
  • 62 Downloads

Abstract

Roll bonding is an effective method to fabricate dissimilar laminated metal composites (LMCs). Therefore, investigation of the microstructure evolution during the roll bonding process is very important to improve the bonding strength and optimize the roll bonding process. In this work, a rolling stuck test was executed to obtain the roll bonding deformation zone. The microstructure and interface morphology of an Al/Ti/Al LMC were investigated during the roll bonding process, and the growth of the diffusion intermetallic compounds was characterized for the annealed LMCs. The results show that the critical roll bonding reduction is greater than 20% for the fabrication of Al/Ti/Al LMCs. The change in the bonding interfacial morphology from straight to wavy is related to the uncoordinated deformation between the constituent layers. When annealing at 550°C, the kinetic exponent of about 0.5 for Al3Ti reveals that the diffusion mechanism obeyed the parabolic growth law in diffusion thickness.

Notes

Acknowledgements

The authors are grateful for financial support from the National Natural Science Foundation of China (No. 51421001), Fundamental Research Funds for the Central Universities (2019CDQYCL001, 2019CDCGCL204), and Research Project of State Key Laboratory of Vehicle NVH and Safety Technology (No. NVHSKL-201706).

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    C.M. Cepeda-Jiménez, M. Pozuelo, O.A. Ruano, and F. Carreño, Mater. Sci. Eng. A 490, 319 (2008).CrossRefGoogle Scholar
  2. 2.
    S.V.A. Ana, M. Reihanian, and B. Lotfi, Mater. Sci. Eng. A 647, 303 (2015).CrossRefGoogle Scholar
  3. 3.
    W.X. Yu, B.X. Liu, X.P. Cui, Y.C. Dong, X. Zhang, J.N. He, C.X. Chen, and F.X. Yin, Mater. Sci. Eng. A 727, 70 (2018).CrossRefGoogle Scholar
  4. 4.
    H. Nie, W. Liang, C. Chi, X. Li, H. Fan, and F. Yang, JOM 68, 1282 (2015).CrossRefGoogle Scholar
  5. 5.
    R. Mola, T. Bucki, and M. Gwoździk, JOM 71, 2078 (2019).CrossRefGoogle Scholar
  6. 6.
    J.G. Kim, S.M. Baek, H.H. Lee, K.G. Chin, S. Lee, and H.S. Kim, Acta Mater. 147, 304 (2018).CrossRefGoogle Scholar
  7. 7.
    M. Ma, P. Huo, W.C. Liu, G.J. Wang, and D.M. Wang, Mater. Sci. Eng. A 636, 301 (2015).CrossRefGoogle Scholar
  8. 8.
    H.G. Huang, P. Chen, and C. Ji, Mater. Des. 118, 233 (2017).CrossRefGoogle Scholar
  9. 9.
    L. Xu, Y.Y. Cui, Y.L. Hao, and R. Yang, Mater. Sci. Eng. A 435, 638 (2006).CrossRefGoogle Scholar
  10. 10.
    H. Wu, G.H. Fan, X.P. Cui, L. Geng, S.H. Qin, and M. Huang, Micron 56, 49 (2014).CrossRefGoogle Scholar
  11. 11.
    A. Mashhadi, A. Atrian, and L. Ghalandari, J. Alloys Compd. 727, 1314–1323 (2017).CrossRefGoogle Scholar
  12. 12.
    L.F. Zeng, R. Gao, Q.F. Fang, X.P. Wang, T. Hao, Z.M. Xie, S. Miao, and T. Zhang, Acta Mater. 110, 341 (2016).CrossRefGoogle Scholar
  13. 13.
    M. Hosseini, N. Pardis, H.D. Manesh, M. Abbasi, and D.I. Kim, Mater. Des. 113, 128 (2017).CrossRefGoogle Scholar
  14. 14.
    P.D. Motevalli and B. Eghbali, Mater. Sci. Eng. A 628, 135 (2015).CrossRefGoogle Scholar
  15. 15.
    M.M. Mahdavian, H. Khatami-Hamedani, and H.R. Abedi, J. Alloys Compd. 703, 605 (2017).CrossRefGoogle Scholar
  16. 16.
    R. Jamaati and M.R. Toroghinejad, Mater. Sci. Eng. A 527, 2320 (2010).CrossRefGoogle Scholar
  17. 17.
    M. Abbasi and M.R. Toroghinejad, J. Mater. Process. Technol. 210, 560 (2010).CrossRefGoogle Scholar
  18. 18.
    C. Gao, L. Long, C. Xin, D. Zhou, and C. Tang, Mater. Des. 107, 205 (2016).CrossRefGoogle Scholar
  19. 19.
    J.M. Lee, B.R. Lee, and S.B. Kang, Mater. Sci. Eng. A 406, 95 (2005).CrossRefGoogle Scholar
  20. 20.
    F. Sun, S. Li, and H. Li, Acta Mater. 58, 1317 (2010).CrossRefGoogle Scholar
  21. 21.
    J.W. Won, H.P. Chan, S.G. Hong, and S.L. Chong, J. Alloys Compd. 651, 245 (2015).CrossRefGoogle Scholar
  22. 22.
    H. El Kadiri, J.C. Baird, J. Kapil, A.L. Oppedal, M. Cherkaoui, and S.C. Vogel, Int. J. Plast 44, 111 (2013).CrossRefGoogle Scholar
  23. 23.
    A.O.F. Hayama, J.F.S.C. Lopes, M.J.G.D. Silva, H.F.G. Abreu, and R. Caram, Mater. Des. 60, 653 (2014).CrossRefGoogle Scholar
  24. 24.
    S.K. Sahoo, R.K. Sabat, S. Sahni, and S. Suwas, Mater. Des. 91, 58 (2016).CrossRefGoogle Scholar
  25. 25.
    X. Feng, X. Zhang, H. Ni, Y. Cheng, Y. Zhu, and Q. Liu, Mater. Sci. Eng. A 564, 22 (2013).CrossRefGoogle Scholar
  26. 26.
    F. Wagner, N. Bozzolo, O.V. Landuyt, and T. Grosdidier, Acta Mater. 50, 1245 (2002).CrossRefGoogle Scholar
  27. 27.
    J. Liu, L. Luo, Y. Su, Y. Xu, X. Li, R. Chen, J. Guo, and H. Fu, Trans. Nonferr. Metal. Soc. 598, 21 (2011).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringChongqing UniversityChongqingChina
  2. 2.State Key Laboratory of Mechanical TransmissionsChongqing UniversityChongqingChina

Personalised recommendations