Advertisement

JOM

pp 1–12 | Cite as

Allowable Ranges of Conventional Forging Parameters Determination for TA15 Ti-Alloy to Obtain Tri-modal Microstructure Under Given Subsequent Heat Treatment

  • Zhichao SunEmail author
  • Zhikun Yin
  • Jing Cao
  • Long Huang
Microstructure Evolution During Deformation Processing
  • 33 Downloads

Abstract

Conventional forging combined with subsequent heat treatments is a promising method for TA15 Ti-alloy to obtain a tri-modal microstructure with excellent mechanical properties. In this paper, a prediction model based on an improved back-propagation neural network was adopted to investigate the combinations of deformation temperature and degree at different strain rates and post-forging cooling modes. There exist reasonable combinations under a strain rate of 0.01 s−1 and air cooling or a strain rate of 0.1 s−1 and water quenching. The dependence of final microstructural feature parameters on forging parameters was obtained for the two cases. Targeting ideal tri-modal microstructure feature parameters, the allowable ranges of the forging parameters were obtained in reverse. The results show that the allowable ranges under a strain rate of 0.01 s−1 and air cooling are wider. This provides a guide to obtain a tri-modal microstructure by conventional forging combined with subsequent heat treatment during actual production.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant No. 51675432]; and Project of Science, Technology and Innovation Commission of Shenzhen Municipality [Grant No. JCYJ20170815163436211].

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    C. Wu, H. Yang, and H.W. Li, Trans. Nonferrous Met. Soc. China 24, 1819 (2014).CrossRefGoogle Scholar
  2. 2.
    X.G. Fan, H. Yang, and P.F. Gao, Mater. Des. 51, 34 (2013).CrossRefGoogle Scholar
  3. 3.
    P.F. Gao, G. Qin, X.X. Wang, Y.X. Li, M. Zhan, G.J. Li, and J.S. Li, Mater. Sci. Eng. A 739, 203 (2019).CrossRefGoogle Scholar
  4. 4.
    Y.G. Zhou, W.D. Zeng, and H.Q. Yu, Mater. Sci. Eng. A 393, 204 (2005).CrossRefGoogle Scholar
  5. 5.
    Z.C. Sun, F.X. Han, H.L. Wu, and H. Yang, J. Mater. Process. Technol. 229, 72 (2016).CrossRefGoogle Scholar
  6. 6.
    J.C. Zhu, Y. Wang, Z.H. Lai, L. Han, and Y. Liu, China 200910073419.9 (2010)Google Scholar
  7. 7.
    P.F. Gao, H. Yang, X.G. Fan, and S.L. Yan, J. Mater. Process. Technol. 212, 2520 (2012).CrossRefGoogle Scholar
  8. 8.
    Z. Sun, S. Guo, and H. Yang, Acta Mater. 61, 2057 (2013).CrossRefGoogle Scholar
  9. 9.
    S.L. Semiatin, S.L. Knisley, P.N. Fagin, F. Zhang, and D.R. Barker, Metall. Mater. Trans. A 34, 2377 (2003).CrossRefGoogle Scholar
  10. 10.
    S.I. Oh, S.L. Semiatin, and J.J. Jonas, Metall. Trans. A 23, 963 (1992).CrossRefGoogle Scholar
  11. 11.
    X.G. Fan, Ph.D. thesis, Northwestern Polytechnical University (2012).Google Scholar
  12. 12.
    M. Jackson, R. Dashwood, L. Christodoulou, and H. Flower, Metall. Mater. Trans. A 36, 1317 (2005).CrossRefGoogle Scholar
  13. 13.
    Z. Sun, H. Yang, and N. Sun, J. Mater. Eng. Perform. 21, 313 (2011).CrossRefGoogle Scholar
  14. 14.
    P.F. Gao, X.G. Fan, and H. Yang, J. Mater. Process. Technol. 239, 160 (2017).CrossRefGoogle Scholar
  15. 15.
    F. Warchomicka, M. Stockinger, and H.P. Degischer, J. Mater. Process. Technol. 177, 473 (2006).CrossRefGoogle Scholar
  16. 16.
    J. Luo, S.F. Liu, and M.Q. Li, Mater. Charact. 108, 115 (2015).CrossRefGoogle Scholar
  17. 17.
    X.G. Fan, H. Yang, P.F. Gao, and S.L. Yan, Mater. Sci. Eng. A 546, 46 (2012).Google Scholar
  18. 18.
    L. Shikai, X. Baiqing, and H. Songxiao, Rare Met. 26, 33 (2007).CrossRefGoogle Scholar
  19. 19.
    C. Dong, Matlab Neural Network and Application (Beijing: Beijing National Defence Industry Press, 2005), p. 64.Google Scholar
  20. 20.
    Z. Sun, H. Wu, M. Wang, and J. Cao, Adv. Eng. Mater. 19, 1 (2017).Google Scholar
  21. 21.
    Z. Sun, X. Mao, H. Wu, H. Yang, and J. Li, Mater. Sci. Eng. A 654, 113 (2016).CrossRefGoogle Scholar
  22. 22.
    X.Q. Wang, M.Sc. thesis, Northwestern Polytechnical University (2014).Google Scholar
  23. 23.
    Y.Y. Zong, D.B. Shan, and Y. Lu, J. Mater. Sci. 41, 3753 (2006).CrossRefGoogle Scholar
  24. 24.
    P.F. Gao, H. Yang, and X.G. Fan, Mater. Des. 32, 2012 (2011).CrossRefGoogle Scholar
  25. 25.
    J. Lin and T.A. Dean, J. Mater. Process. Technol. 167, 354 (2005).CrossRefGoogle Scholar
  26. 26.
    M. Meng, X.G. Fan, H. Yang, L.G. Guo, M. Zhan, and P.F. Gao, J. Alloys Compd. 714, 294 (2017).CrossRefGoogle Scholar
  27. 27.
    W. Yu, M. Li, and J. Luo, Rare Metal. Mater. Eng. 38, 19 (2009).CrossRefGoogle Scholar
  28. 28.
    D. Hull and D.J. Bacon, Introduction to Dislocations, 5th ed. (Oxford: Elsevier, 2011).Google Scholar
  29. 29.
    T. Sheppard and J. Norley, Mater. Sci. Technol. 4, 903 (1988).CrossRefGoogle Scholar
  30. 30.
    Y. Zhou, W. Zeng, and H. Yu, Eng. Sci. 3, 61 (2001).Google Scholar
  31. 31.
    X. Chen, Q. Fan, and X. Yang, Rare Metal. Mater. Eng. 41, 2123 (2012).Google Scholar
  32. 32.
    X. Ma, W. Zeng, F. Tian, and Y. Zhou, Mater. Sci. Eng. A 548, 6 (2012).CrossRefGoogle Scholar
  33. 33.
    J. Xu, W. Zeng, Z. Jia, X. Sun, and J. Zhou, J. Alloys Compd. 618, 343 (2015).CrossRefGoogle Scholar
  34. 34.
    S.L. Semiatin and T.R. Bieler, Acta Mater. 49, 3565 (2001).CrossRefGoogle Scholar
  35. 35.
    B. Appolaire, L. Héricher, and E. Aeby-Gautier, Acta Mater. 53, 3001 (2005).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Research and Development Institute of Northwestern Polytechnical University in ShenzhenShenzhenChina
  2. 2.State Key Lab of Solidification Processing, Department of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations