, Volume 71, Issue 12, pp 4696–4704 | Cite as

Effect of Semi-solid Deformation on the Restoration Mechanisms and Texture Evolution in AA7075

  • M. H. Sheikh-Ansari
  • M. Aghaie-KhafriEmail author
Microstructure Evolution During Deformation Processing


In the present study, restoration and texture evolution mechanisms were investigated during the semi-solid hot compression of AA7075 aluminum alloy using electron backscatter diffraction and x-ray diffraction analysis. The results indicated that the restoration mechanism of the alloy at the semi-solid state can be encountered as a combination of continuous dynamic recrystallization (CDRX) and formation of dilatant bands. CDRX occurred because of the homogeneous increase in misorientation and lattice rotation adjacent to grain boundaries. On the other hand, dilatant bands were found to be formed as a result of sliding and rotation of the globular solid grains. Deformation at low strain rates promoted the role of strain accommodation in the liquid phase as well as subsequent formation of dilatant bands. Following hot compression at semi-solid state, a weak fiber texture of \( (200)\left\| {\text{CD}} \right. \) formed at low strain rates, whereas \( (220)\left\| {\text{CD}} \right. \) developed at high strain rates.



The authors are grateful to Prof. N.A. Belov, National University of Science and Technology-MISIS (Moscow), for providing EBSD facilities.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    G. Totten and D. MacKenzie, Handbook of Aluminum: Physical Metallurgy and Processes, 1st ed., vol. 1 (New York: Marcel Dekker INC, 2003).CrossRefGoogle Scholar
  2. 2.
    J.C. Williams and E.A. Starke, Acta Mater. 51, 5775 (2003).CrossRefGoogle Scholar
  3. 3.
    M. Rajamuthamilselvan and S. Ramanathan, J. Alloys Compd. 509, 948 (2011).CrossRefGoogle Scholar
  4. 4.
    H.V. Atkinson, K. Burke, and G. Vaneetveld, Mater. Sci. Eng. A 1, 973 (2008).Google Scholar
  5. 5.
    H. Hallberg, M. Wallin, and M. Ristinmaa, Mater. Sci. Eng. A 527, 1126 (2010).CrossRefGoogle Scholar
  6. 6.
    S. Mandal, A.K. Bhaduri, and V. Subramanya Sarma, Metall. Mater. Trans. A 42, 1062 (2011).CrossRefGoogle Scholar
  7. 7.
    S. Mandal, A.K. Bhaduri, and V. Subramanya Sarma, Metall. Mater. Trans. A 43, 410 (2012).CrossRefGoogle Scholar
  8. 8.
    N. Mortazavi, N. Bonora, A. Ruggiero, and M. Hörnqvist Colliander, Metall. Mater. Trans. A 47, 2555 (2016).CrossRefGoogle Scholar
  9. 9.
    P. Zhou and Q. Ma, Met. Mater. Int. 23, 359 (2017).CrossRefGoogle Scholar
  10. 10.
    M. Aghaie-Khafri and A. Zargaran, JOM 62, 37 (2010).CrossRefGoogle Scholar
  11. 11.
    X. Du and B. Wu, Metall. Mater. Trans. A 36, 3343 (2005).CrossRefGoogle Scholar
  12. 12.
    H. Matsumoto, L. Bin, S.H. Lee, Y. Li, Y. Ono, and A. Chiba, Metall. Mater. Trans. A 44, 3245 (2013).CrossRefGoogle Scholar
  13. 13.
    J. Driver, Mater. Lett. 222, 135 (2018).CrossRefGoogle Scholar
  14. 14.
    S. Gourdet and F. Montheillet, Mater. Sci. Eng. A 283, 274 (2000).CrossRefGoogle Scholar
  15. 15.
    K. Huang and R.E. Logé, Mater. Des. 111, 548 (2016).CrossRefGoogle Scholar
  16. 16.
    H.J. McQueen and M.E. Kassner, Scr. Mater. 51, 461 (2004).CrossRefGoogle Scholar
  17. 17.
    Z.C. Sun, L.S. Zheng, and H. Yang, Mater. Charact. 90, 71 (2014).CrossRefGoogle Scholar
  18. 18.
    H.E. Hu, L. Zhen, B.Y. Zhang, L. Yang, and J.Z. Chen, Mater. Charact. 59, 1185 (2008).CrossRefGoogle Scholar
  19. 19.
    Y.N. Chen, J.F. Wei, Y.Q. Zhao, and J. Sun, J. Alloys Compd. 487, 314 (2009).CrossRefGoogle Scholar
  20. 20.
    Y. Chen, G. Liu, X. Zhang, and Y. Zhao, Int. J. Miner. Metall. Mater. 20, 266 (2013).CrossRefGoogle Scholar
  21. 21.
    Y. Chino, M. Kobata, H. Iwasaki, and M. Mabuchi, Acta Mater. 51, 3309 (2003).CrossRefGoogle Scholar
  22. 22.
    Y. Chen, Z. Yuan, H. Zhan, Y. Zhao, X. Song, and G. Wang, et al., J. Alloys Compd. 712, 468 (2017).CrossRefGoogle Scholar
  23. 23.
    M.H. Sheikh-Ansari and M. Aghaie-Khafri, Int. J. Mater. Form. 11, 165 (2018).CrossRefGoogle Scholar
  24. 24.
    M.H. Sheikh-Ansari and M. Aghaie-Khafri, Mech. Res. Commun. 89, 1 (2018).CrossRefGoogle Scholar
  25. 25.
    M.H. Sheikh-Ansari and M. Aghaie-Khafri, Contin. Mech. Thermodyn. 30, 805 (2018).MathSciNetCrossRefGoogle Scholar
  26. 26.
    B. Binesh and M. Aghaie-Khafri, Metals 40, 46 (2016).Google Scholar
  27. 27.
    A. Bolouri, M. Shahmiri, and C.G. Kang, J. Alloys Compd. 509, 402 (2011).CrossRefGoogle Scholar
  28. 28.
    C.P. Chen and C.Y.A. Tsao, Acta Mater. 45, 1955 (1997).CrossRefGoogle Scholar
  29. 29.
    G. Chen, Z. Du, and Y. Cheng, Mater. Des. 35, 774 (2012).CrossRefGoogle Scholar
  30. 30.
    M. Aghaie-Khafri and D. Azimi-Yancheshme, JOM 64, 585 (2012).CrossRefGoogle Scholar
  31. 31.
    H. Iwasaki, T. Mori, M. Mabuchi, and K. Higashi, Acta Mater. 46, 6351 (1998).CrossRefGoogle Scholar
  32. 32.
    F.J. Humphreys and M. Hatherly, Recrystallization and related annealing phenomena, 1st ed. (Burlington: Elsevier Science, 2004).Google Scholar
  33. 33.
    J. Jiang, Y. Wang, G. Xiao, and X. Nie, J. Mater. Process. Technol. 238, 361 (2016).CrossRefGoogle Scholar
  34. 34.
    S. Chayong, H.V. Atkinson, and P. Kapranos, Mater. Sci. Eng. A 390, 3 (2005).CrossRefGoogle Scholar
  35. 35.
    I.J. Polmear, Light Alloys: Metallurgy of the Light Metals, 3rd ed. (London: Arnold, 1995).Google Scholar
  36. 36.
    K.M. Kareh, C. O’Sullivan, T. Nagira, H. Yasuda, and C.M. Gourlay, Acta Mater. 125, 187 (2017).CrossRefGoogle Scholar
  37. 37.
    M. Mabuchi and K. Higashi, Acta Mater. 47, 1915 (1999).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Faculty of Materials Science and EngineeringK.N. Toosi University of TechnologyTehranIran

Personalised recommendations